scholarly journals Active site-directed inhibitors of cytochrome P-450scc. Structural and mechanistic implications of a side chain-substituted series of amino-steroids.

1983 ◽  
Vol 258 (19) ◽  
pp. 11446-11452 ◽  
Author(s):  
J J Sheets ◽  
L E Vickery
Keyword(s):  
1991 ◽  
Vol 280 (3) ◽  
pp. 659-662 ◽  
Author(s):  
J Martín ◽  
A Slade ◽  
A Aitken ◽  
R Arche ◽  
R Virden

The site of reaction of penicillin acylase from Kluyvera citrophila with the potent inhibitor phenylmethanesulphonyl fluoride was investigated by incubating the inactivated enzyme with thioacetic acid to convert the side chain of the putative active-site serine residue to that of cysteine. The protein product contained one thiol group, which was reactive towards 2,2′-dipyridyl disulphide and iodoacetic acid. Carboxymethylcysteine was identified as the N-terminal residue of the beta-subunit of the carboxy[3H]methylthiol-protein. No significant changes in tertiary structure were detected in the modified penicillin acylase using near-u.v. c.d. spectroscopy. However, the catalytic activity (kcat) with either an anilide or an ester substrate was decreased in the thiol-protein by a factor of more than 10(4). A comparison of sequences of apparently related acylases shows no other extensive regions of conserved sequence containing an invariant serine residue. The side chain of this residue is proposed as a candidate nucleophile in the formation of an acyl-enzyme during catalysis.


Author(s):  
Kohei Sasamoto ◽  
Tomoki Himiyama ◽  
Kunihiko Moriyoshi ◽  
Takashi Ohmoto ◽  
Koichi Uegaki ◽  
...  

The acetylxylan esterases (AXEs) classified into carbohydrate esterase family 4 (CE4) are metalloenzymes that catalyze the deacetylation of acetylated carbohydrates. AXE from Caldanaerobacter subterraneus subsp. tengcongensis (TTE0866), which belongs to CE4, is composed of three parts: a signal sequence (residues 1–22), an N-terminal region (NTR; residues 23–135) and a catalytic domain (residues 136–324). TTE0866 catalyzes the deacetylation of highly substituted cellulose acetate and is expected to be useful for industrial applications in the reuse of resources. In this study, the crystal structure of TTE0866 (residues 23–324) was successfully determined. The crystal diffracted to 1.9 Å resolution and belonged to space group I212121. The catalytic domain (residues 136–321) exhibited a (β/α)7-barrel topology. However, electron density was not observed for the NTR (residues 23–135). The crystal packing revealed the presence of an intermolecular space without observable electron density, indicating that the NTR occupies this space without a defined conformation or was truncated during the crystallization process. Although the active-site conformation of TTE0866 was found to be highly similar to those of other CE4 enzymes, the orientation of its Trp264 side chain near the active site was clearly distinct. The unique orientation of the Trp264 side chain formed a different-shaped cavity within TTE0866, which may contribute to its reactivity towards highly substituted cellulose acetate.


1988 ◽  
Vol 66 (11) ◽  
pp. 2733-2750 ◽  
Author(s):  
Saul Wolfe ◽  
Kiyull Yang ◽  
Maged Khalil

Using the MMPEN parameters of Allinger's MMP2(85) force field, a conformational analysis has been performed on four biologically active penicillins; D-ampicillin, L-α-phenoxyethylpenicillin, penicillin G, and penicillin V, and on five biologically inactive or much less active penicillins: L-ampicillin, D-α-phenoxyethylpenicillin, N-methylpenicillin G, 6α-methylpenicillin G, and bisnorpenicillin G. Antibacterial activity is found to be associated with the existence of a global minimum having a compact structure, whose convex face is accessible to a penicillin binding protein (PBP), with the C3-carboxyl group and the side-chain N-H exposed on this face. Using the MMPEP parameters of MMP2(85), a conformational analysis has been performed on phenylacetyl-D-Ala-D-Ala-O−, a peptide model of the normal substrate of a PBP. Labischinski's global minimum has been reproduced, along with structures that correspond to Tipper and Strominger's proposal that the N4—C7 bond of a penicillin corresponds to the Ala–Ala peptide bond, and to Hasan's proposal that the N4—C5 bond of penicillin corresponds to the peptide bond. For both models, conformations of the peptide related to the pseudoaxial and pseudoequatorial conformations of the thiazolidine ring of penicillin G have been examined. It is concluded that penicillin is not a structural analog of the global minimum of the peptide; however, comparisons based on unbound conformations of PBP substrates are unable to determine which model is more appropriate, or which conformation of penicillin G is the biologically significant one. Using the ECEPP/MMPEP strategy, a model of the active site of a PBP has been obtained, following a search of 200,000 structures of the peptide Ac-NH-Val-Gly-Ser-Val-Thr-Lys-NH-Me. This peptide contains the sequence at the active site of a PBP of Streptomyces R61, for which it is also known that the C3-carboxyl group of penicillin binds to the ε-amino group of lysine, and the β-lactam reacts chemically with the serine OH. The lysine and serine side chains and the C-terminal carbonyl group are found to occupy the concave face of the active site model.A strategy for the docking of penicillins or peptides to this model, with full minimization of the conformational energies of the complexes, has been devised. All active penicillins bind through strong hydrogen bonds to the C3-carboxyl group and the side-chain N-H, and with a four-centered relationship between the O-H of serine and the (O)C-N of the β-lactam ring. The geometrical parameters of this relationship are reminiscent of those found in the gas phase transition state of neutral hydration of a carbonyl group. When the energies of formation and geometries of the pseudoaxial and pseudoequatorial penicillin G complexes are examined, there is now a clear preference for the binding of the pseudoaxial conformation, which is the global minimum of the uncomplexed penicillin in this case. A similar examination of the peptide complexes reveals that only the conformation of the peptide that corresponds to Tipper and Strominger's model, and is based on the pseudoaxial conformation of penicillin G, can form a complex with a geometry and energy comparable to those of a biologically active penicillin.


2017 ◽  
Author(s):  
Tian Jiang ◽  
P. Douglas Renfrew ◽  
Kevin Drew ◽  
Noah Youngs ◽  
Glenn Butterfoss ◽  
...  

AbstractA wide variety of protein and peptidomimetic design tasks require matching functional three-dimensional motifs to potential oligomeric scaffolds. Enzyme design, for example, aims to graft active-site patterns typically consisting of 3 to 15 residues onto new protein surfaces. Identifying suitable proteins capable of scaffolding such active-site engraftment requires costly searches to identify protein folds that can provide the correct positioning of side chains to host the desired active site. Other examples of biodesign tasks that require simpler fast exact geometric searches of potential side chain positioning include mimicking binding hotspots, design of metal binding clusters and the design of modular hydrogen binding networks for specificity. In these applications the speed and scaling of geometric search limits downstream design to small patterns. Here we present an adaptive algorithm to searching for side chain take-off angles compatible with an arbitrarily specified functional pattern that enjoys substantive performance improvements over previous methods. We demonstrate this method in both genetically encoded (protein) and synthetic (peptidomimetic) design scenarios. Examples of using this method with the Rosetta framework for protein design are provided but our implementation is compatible with multiple protein design frameworks and is freely available as a set of python scripts (https://github.com/JiangTian/adaptive-geometric-search-for-protein-design).


2003 ◽  
Vol 373 (3) ◽  
pp. 733-738 ◽  
Author(s):  
Peter T. ERSKINE ◽  
Leighton COATES ◽  
Danica BUTLER ◽  
James H. YOUELL ◽  
Amanda A. BRINDLEY ◽  
...  

The X-ray structure of yeast 5-aminolaevulinic acid dehydratase, in which the catalytic site of the enzyme is complexed with a putative cyclic intermediate composed of both substrate moieties, has been solved at 0.16 nm (1.6 Å) resolution. The cyclic intermediate is bound covalently to Lys263 with the amino group of the aminomethyl side chain ligated to the active-site zinc ion in a position normally occupied by a catalytic hydroxide ion. The cyclic intermediate is catalytically competent, as shown by its turnover in the presence of added substrate to form porphobilinogen. The findings, combined with those of previous studies, are consistent with a catalytic mechanism in which the C–C bond linking both substrates in the intermediate is formed before the C–N bond.


1999 ◽  
Vol 339 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Michael A. NOBLE ◽  
Caroline S. MILES ◽  
Stephen K. CHAPMAN ◽  
Dominikus A. LYSEK ◽  
Angela C. MACKAY ◽  
...  

The effects of mutation of key active-site residues (Arg-47, Tyr-51, Phe-42 and Phe-87) in Bacillus megaterium flavocytochrome P450 BM3 were investigated. Kinetic studies on the oxidation of laurate and arachidonate showed that the side chain of Arg-47 contributes more significantly to stabilization of the fatty acid carboxylate than does that of Tyr-51 (kinetic parameters for oxidation of laurate: R47A mutant, Km 859 µM, kcat 3960 min-1; Y51F mutant, Km 432 µM, kcat 6140 min-1; wild-type, Km 288 µM, kcat 5140 min-1). A slightly increased kcat for the Y51F-catalysed oxidation of laurate is probably due to decreased activation energy (ΔG‡) resulting from a smaller ΔG of substrate binding. The side chain of Phe-42 acts as a phenyl ‘cap ’ over the mouth of the substrate-binding channel. With mutant F42A, Km is massively increased and kcat is decreased for oxidation of both laurate (Km 2.08 mM, kcat 2450 min-1) and arachidonate (Km 34.9 µM, kcat 14620 min-1; compared with values of 4.7 µM and 17100 min-1 respectively for wild-type). Amino acid Phe-87 is critical for efficient catalysis. Mutants F87G and F87Y not only exhibit increased Km and decreased kcat values for fatty acid oxidation, but also undergo an irreversible conversion process from a ‘fast ’ to a ‘slow ’ rate of substrate turnover [for F87G (F87Y)-catalysed laurate oxidation: kcat ‘fast ’, 760 (1620) min-1; kcat ‘slow ’, 48.0 (44.6) min-1; kconv (rate of conversion from fast to slow form), 4.9 (23.8) min-1]. All mutants showed less than 10% uncoupling of NADPH oxidation from fatty acid oxidation. The rate of FMN-to-haem electron transfer was shown to become rate-limiting in all mutants analysed. For wild-type P450 BM3, the rate of FMN-to-haem electron transfer (8340 min-1) is twice the steady-state rate of oxidation (4100 min-1), indicating that other steps contribute to rate limitation. Active-site structures of the mutants were probed with the inhibitors 12-(imidazolyl)dodecanoic acid and 1-phenylimidazole. Mutant F87G binds 1-phenylimidazole > 10-fold more tightly than does the wild-type, whereas mutant Y51F binds the haem-co-ordinating fatty acid analogue 12-(imidazolyl)dodecanoic acid > 30-fold more tightly than wild-type.


2014 ◽  
Vol 58 (8) ◽  
pp. 4826-4836 ◽  
Author(s):  
Hanna-Kirsti S. Leiros ◽  
Susann Skagseth ◽  
Kine Susann Waade Edvardsen ◽  
Marit Sjo Lorentzen ◽  
Gro Elin Kjæreng Bjerga ◽  
...  

ABSTRACTMetallo-β-lactamases (MBLs) are the causative mechanism for resistance to β-lactams, including carbapenems, in many Gram-negative pathogenic bacteria. One important family of MBLs is the Verona integron-encoded MBLs (VIM). In this study, the importance of residues Asp120, Phe218, and His224 in the most divergent VIM variant, VIM-7, was investigated to better understand the roles of these residues in VIM enzymes through mutations, enzyme kinetics, crystal structures, thermostability, and docking experiments. The tVIM-7-D120A mutant with a tobacco etch virus (TEV) cleavage site was enzymatically inactive, and its structure showed the presence of only the Zn1 ion. The mutant was less thermostable, with a melting temperature (Tm) of 48.5°C, compared to 55.3°C for the wild-type tVIM-7. In the F218Y mutant, a hydrogen bonding cluster was established involving residues Asn70, Asp84, and Arg121. The tVIM-7-F218Y mutant had enhanced activity compared to wild-type tVIM-7, and a slightly higherTm(57.1°C) was observed, most likely due to the hydrogen bonding cluster. Furthermore, the introduction of two additional hydrogen bonds adjacent to the active site in the tVIM-7-H224Y mutant gave a higher thermostability (Tm, 62.9°C) and increased enzymatic activity compared to those of the wild-type tVIM-7. Docking of ceftazidime in to the active site of tVIM-7, tVIM-7-H224Y, and VIM-7-F218Y revealed that the side-chain conformations of residue 224 and Arg228 in the L3 loop and Tyr67 in the L1 loop all influence possible substrate binding conformations. In conclusion, the residue composition of the L3 loop, as shown with the single H224Y mutation, is important for activity particularly toward the positively charged cephalosporins like cefepime and ceftazidime.


1974 ◽  
Vol 52 (11) ◽  
pp. 1018-1023 ◽  
Author(s):  
G. Mains ◽  
T. Hofmann

Penicillopepsin was fully inactivated by the pepsin inhibitor 1,2-epoxy-3-(p-nitrophenoxy) propane, and 1.3 ± 0.3 mol of reagent became associated with each mole of protein. Inactivation was more rapid at pH 3.0 than at pH 6.0. Approximately 1 equivalent of the bound reagent was esterified to an aspartic acid side chain. Enzyme previously inactivated with diazoacetylnorleucine methyl ester did not react with the epoxide; and enzyme that was first inactivated with the epoxide did not react with the diazo inhibitor. The results add further evidence for the enzymatic similarity of porcine pepsin and penicillopepsin.


Sign in / Sign up

Export Citation Format

Share Document