scholarly journals Reciprocal regulation of gene transcription by insulin. Inhibition of the phosphoenolpyruvate carboxykinase gene and stimulation of gene 33 in a single cell type.

1988 ◽  
Vol 263 (26) ◽  
pp. 13007-13011 ◽  
Author(s):  
D T Chu ◽  
C M Davis ◽  
N B Chrapkiewicz ◽  
D K Granner
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joana S. Paiva ◽  
Pedro A. S. Jorge ◽  
Rita S. R. Ribeiro ◽  
Meritxell Balmaña ◽  
Diana Campos ◽  
...  

1995 ◽  
Vol 352 (5) ◽  
pp. 469-476 ◽  
Author(s):  
Martina Schmidt ◽  
Christine Bienek ◽  
Chris J. van Koppen ◽  
Martin C. Michel ◽  
Karl H. Jakobs

2003 ◽  
Vol 31 (4) ◽  
pp. 409-417 ◽  
Author(s):  
Anne Huhtala ◽  
Sami K. Nurmi ◽  
Hanna Tähti ◽  
Lotta Salminen ◽  
Päivi Alajuuma ◽  
...  

Alternatives to the Draize rabbit eye irritation test are currently being investigated. Because of morphological and biochemical differences between the rabbit and the human eye, continuous human cell lines have been proposed for use in ocular toxicology studies. Single cell-type monolayer cultures in culture medium have been used extensively in ocular toxicology. In the present study, an SV40-immortalised human corneal epithelial (HCE) cell line was characterised immunohistochemically, by using 13 different monoclonal antibodies to cytokeratins (CKs), ranging from CK3 to CK20. The results from the monolayer HCE cell cultures were compared with those from the corneal epithelium of human corneal cryostat sections. Previous studies have shown that the morphology of the HCE cell is similar to that of primary cultured human corneal epithelial cells, and that the cells express the cornea-specific CK3. In the study reported here, we show that the cell line also expresses CKs 7, 8, 18 and 19. These CKs are typically expressed by simple epithelial cells, and are not found in the human cornea in vivo. Therefore, the monolayer HCE cell line grown in culture medium does not express the CK pattern that is typical of human corneal epithelium. This should be taken into consideration when using HCE cell cultures in similar single cell-type experiments for ocular toxicology.


1996 ◽  
Vol 270 (5) ◽  
pp. E873-E881 ◽  
Author(s):  
M. S. Kansara ◽  
A. K. Mehra ◽  
J. Von Hagen ◽  
E. Kabotyansky ◽  
P. J. Smith

Acyl-CoAsynthetase (ACS) is a key gene for cellular utilization of long-chain fatty acids. We characterized its regulation by physiological concentrations of insulin that acutely regulate metabolism. Our results demonstrate that subnanomolar insulin rapidly and maximally stimulates ACS gene transcription in the absence of protein synthesis; 0.5 nM insulin produced a 2.3 +/- 0.1-fold increase in ACS mRNA levels and induced ACS gene transcription 2.4 +/- 0.3-fold. The insulin sensitivity of ACS was compared with lipoprotein lipase (LPL) and stearoyl-CoA desaturase-1 (SCD-1), which were both less sensitive to insulin. Physiological triiodothyronine (10 nm) also induced ACS mRNA 2.4 +/- 0.1-fold and gene transcription 2.8 +/- 0.3-fold and coordinately induced LPL and SCD-1 mRNA and gene transcription. Because insulin and adenosine 3',5'-cyclic monophosphate often regulate genes involved in lipid and carbohydrate metabolism in a reciprocal manner, we evaluated effects of 1-methyl-3-isobutylxanthine (MIX).ACS mRNA levels were strongly downregulated by MIX in a dose-dependent manner, and ACS gene transcription inhibited in a coordinate manner with LPL and SCD-1. These data demonstrate a uniquely sensitive pattern of stimulation of ACS gene transcription by insulin with reciprocal regulation by MIX, and they suggest a significant role for ACS as a tightly regulated “gatekeeper” gene participating in the control of adipocyte metabolism.


Sign in / Sign up

Export Citation Format

Share Document