scholarly journals Phosphorylation of NF-KB1-p50 is involved in NF-kappa B activation and stable DNA binding.

1994 ◽  
Vol 269 (48) ◽  
pp. 30089-30092
Author(s):  
C.C. Li ◽  
R.M. Dai ◽  
E Chen ◽  
D.L. Longo
Keyword(s):  
1993 ◽  
Vol 13 (2) ◽  
pp. 852-860
Author(s):  
M B Toledano ◽  
D Ghosh ◽  
F Trinh ◽  
W J Leonard

We previously reported that either oxidation or alkylation of NF-kappa B in vitro abrogates DNA binding. We used this phenomenon to help elucidate structural determinants of NF-kappa B binding. We now demonstrate that Cys-62 of NF-kappa B p50 mediates the redox effect and lies within an N-terminal region required for DNA binding but not for dimerization. Several point mutations in this region confer a transdominant negative binding phenotype to p50. The region is highly conserved in all Rel family proteins, and we have determined that it is also critical for DNA binding of NF-kappa B p65. Replacement of the N-terminal region of p65 with the corresponding region from p50 changes its DNA-binding specificity towards that of p50. These data suggest that the N-terminal regions of p50 and p65 are critical for DNA binding and help determine the DNA-binding specificities of p50 and p65. We have defined within the N-terminal region a sequence motif, R(F/G)(R/K)YXCE, which is present in Rel family proteins and also in zinc finger proteins capable of binding to kappa B sites. The potential significance of this finding is discussed.


1993 ◽  
Vol 13 (7) ◽  
pp. 3850-3859
Author(s):  
T A Coleman ◽  
C Kunsch ◽  
M Maher ◽  
S M Ruben ◽  
C A Rosen

The subunits of NF-kappa B, NFKB1 (formerly p50) and RelA (formerly p65), belong to a growing family of transcription factors that share extensive similarity to the c-rel proto-oncogene product. The homology extends over a highly conserved stretch of approximately 300 amino acids termed the Rel homology domain (RHD). This region has been shown to be involved in both multimerization (homo- and heterodimerization) and DNA binding. It is now generally accepted that homodimers of either subunit are capable of binding DNA that contains a kappa B site originally identified in the immunoglobulin enhancer. Recent studies have demonstrated that the individual subunits of the NF-kappa B transcription factor complex can be distinguished by their ability to bind distinct DNA sequence motifs. By using NFKB1 and RelA subunit fusion proteins, different regions within the RHD were found to confer DNA-binding and multimerization functions. A fusion protein that contains 34 N-terminal amino acids of NFKB1 and 264 amino acids of RelA displayed preferential binding to an NFKB1-selective DNA motif while dimerizing with the characteristics of RelA. Within the NFKB1 portion of this fusion protein, a single amino acid change of His to Arg altered the DNA-binding specificity to favor interaction with the RelA-selective DNA motif. Furthermore, substitution of four amino acids from NFKB1 into RelA was able to alter the DNA-binding specificity of the RelA protein to favor interaction with the NFKB1-selective site. Taken together, these findings demonstrate the presence of a distinct subdomain within the RHD involved in conferring the DNA-binding specificity of the Rel family of proteins.


1992 ◽  
Vol 12 (2) ◽  
pp. 444-454
Author(s):  
S M Ruben ◽  
R Narayanan ◽  
J F Klement ◽  
C H Chen ◽  
C A Rosen

The NF-kappa B transcription factor complex is composed of two proteins, designated p50 and p65, both having considerable homology to the product of the rel oncogene. We present evidence that the p65 subunit is a potent transcriptional activator in the apparent absence of the p50 subunit, consistent with in vitro results demonstrating that p65 can interact with DNA on its own. To identify the minimal activation domain, chimeric fusion proteins between the DNA binding domain of the yeast transcriptional activator protein GAL4 and regions of the carboxy terminus of p65 were constructed, and their transcriptional activity was assessed by using a GAL4 upstream activation sequence-driven promoter-chloramphenicol acetyltransferase fusion. This analysis suggests that the boundaries of the activation domain lie between amino acids 415 and 550. Moreover, single amino acid changes within residues 435 to 459 greatly diminished activation. Similar to other activation domains, this region contains a leucine zipper-like motif as well as an overall net negative charge. To identify those residues essential for DNA binding, we made use of a naturally occurring derivative of p65, lacking residues 222 to 231 (hereafter referred to as p65 delta), and produced via an alternative splice site. Gel mobility shift analysis using bacterially expressed p65, p65 delta, and various mutants indicates that residues 222 to 231 are important for binding to kappa B DNA. Coimmunoprecipitation analysis suggests that these residues likely contribute to the multimerization function required for homomeric complex formation or heteromeric complex formation with p50 in that no association of p65 delta with itself or with p50 was evident. However, p65 delta was able to form weak heteromeric complexes with p65 that were greatly reduced in their ability to bind DNA. On the basis of these findings, we suggest that subtle changes within the proposed multimerization domain can elicit different effects with the individual Rel-related proteins and that a potential role of p65 delta may be to negatively regulate NF-kappa B function through formation of nonfunctional heteromeric complexes.


1995 ◽  
Vol 15 (3) ◽  
pp. 1405-1421 ◽  
Author(s):  
C C Adams ◽  
J L Workman

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


1996 ◽  
Vol 16 (3) ◽  
pp. 1169-1178 ◽  
Author(s):  
D W White ◽  
G A Pitoc ◽  
T D Gilmore

The v-Rel oncoprotein of the avian Rev-T retrovirus is a member of the Rel/NF-kappa B family of transcription factors. The mechanism by which v-Rel malignantly transforms chicken spleen cells is not precisely known. To gain a better understanding of functions needed for transformation by v-Rel, we have now characterized the activities of mutant v-Rel proteins that are defective for specific protein-protein interactions. Mutant v-delta NLS, which has a deletion of the primary v-Rel nuclear localizing sequence, does not interact efficiently with I kappa B-alpha but still transforms chicken spleen cells approximately as well as wild-type v-Rel, indicating that interaction with I kappa B-alpha is not essential for the v-Rel transforming function. A second v-Rel mutant, v-SPW, has been shown to be defective for the formation of homodimers, DNA binding, and transformation. However, we now find that v-SPW can form functional DNA-binding heterodimers in vitro and in vivo with the cellular protein NF-kappa B p-52. Most strikingly, coexpression of v-SPW and p52 from a retroviral vector can induce the malignant transformation of chicken spleen cells, whereas expression of either protein alone cannot. Our results are most consistent with a model wherein Rel homodimers or heterodimers must bind DNA and alter gene expression in order to transform lymphoid cells.


1996 ◽  
Vol 16 (11) ◽  
pp. 6477-6485 ◽  
Author(s):  
S Bell ◽  
J R Matthews ◽  
E Jaffray ◽  
R T Hay

NF-(kappa)B is an inducible transcription factor that activates many cellular genes involved in stress and immune response and whose DNA binding activity and cellular distribution are regulated by I(kappa)B inhibitor proteins. The interaction between NF-(kappa)B p50 and DNA was investigated by protein footprinting using chemical modification and partial proteolysis. Both methods confirmed lysine-DNA contacts already found in the crystal structure (K-147, K-149, K-244, K-275, and K-278) but also revealed an additional contact in the lysine cluster K-77-K-78-K-80 which was made on an extended DNA. Molecular modelling of such a DNA-protein complex revealed that lysine 80 is ideally placed to make phosphate backbone contacts in the extended DNA. Thus, it seems likely that the entire AB loop, containing lysines 77, 78, and 80, forms a C-shaped clamp that closes around the DNA recognition site. The same protein footprinting approaches were used to probe the interaction of p50 with the ankyrin repeat containing proteins I(kappa)B(gamma) and I(kappa)B(alpha). Lysine residues in p50 that were protected from modification by DNA were also protected from modification by I(kappa)B(gamma) but not I(kappa)B(alpha). Similarly, proteolytic cleavage at p50 residues which contact DNA was inhibited by bound I(kappa)B(gamma) but was enhanced by the presence of I(kappa)B(alpha). Thus, I(kappa)B(gamma) inhibits the DNA binding activity of p50 by direct interactions with residues contacting DNA, whereas the same residues remain exposed in the presence of I(kappa)B(alpha), which binds to p50 but does not block DNA binding.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 9122-9122
Author(s):  
Mylin Ann Torres ◽  
Thaddeus Pace ◽  
Jennifer Felger ◽  
Tian Liu ◽  
Karen D. Godette ◽  
...  

9122 Background: We prospectively evaluated risk factors for persistent cancer-related fatigue in women with breast cancer undergoing lumpectomy with or without chemotherapy (CTX) prior to whole breast radiotherapy (XRT). We assessed the potential role of inflammatory mediators, demographic characteristics, and treatment history including CTX. Methods: Following lumpectomy, 60 women received a definitive course of whole breast XRT (50 Gy plus a 10 Gy boost). Prior to XRT, at week 6 of XRT, and 6 weeks post XRT, subjects completed the Multidimensional Fatigue Inventory (MFI) and underwent blood draws for inflammatory mediators (protein and mRNA). Results: Independent multivariate analyses of clinical and demographic factors revealed that CTX (p<.001) , given neoadjuvantly or adjuvantly, and age <50 (p=.03) were significant predictors of higher fatigue scores post XRT. Mean MFI scores in patients treated with CTX (n=24) were 20 points higher than patients not treated with CTX (p<.001) with a clinically meaningful difference in scores being 10 points on the MFI. Gene ontology analysis of differentially expressed genes indicated increased activation of genes involved in immune and inflammatory responses in fatigued vs. non-fatigued patients (p<.001). Of the inflammatory mediators, plasma IL-6 prior to XRT was the strongest predictor of post XRT fatigue (p=.02). Moreover, plasma IL-6 concentrations prior to XRT were significantly higher in patients who received CTX (mean 4.96 vs. 2.53, p=.01). Patients who received CTX also had significantly higher levels of NF Kappa B DNA binding 6 weeks post XRT (p<.001), and transcription factor binding analysis revealed a greater representation of genes with the NF Kappa B DNA binding motif in fatigued vs. non-fatigued patients (p =.05). Conclusions: Collectively, these data suggest an interaction between CTX and XRT leading to inflammation and fatigue several weeks post XRT. This relationship was independent of whether CTX was given pre or post-operatively. Treatments targeting inflammation before XRT may reduce fatigue post therapy, particularly in patients previously treated with CTX.


1995 ◽  
Vol 312 (3) ◽  
pp. 833-838 ◽  
Author(s):  
A F G Slater ◽  
M Kimland ◽  
S A Jiang ◽  
S Orrenius

Rat thymocytes spontaneously undergo apoptotic death in cell culture, and are also sensitive to the induction of apoptosis by various stimuli. We show that unstimulated thymocytes constitutively express a p50-containing nuclear factor kappa B (NF kappa B)/rel DNA-binding activity in their nuclei. When the cells were fractionated by density-gradient centrifugation this activity was found to be most pronounced in immature CD4+8+ thymocytes, the cell population that undergoes selection by apoptosis in vivo and that is most sensitive to external inducers of apoptosis in vitro. The intensity of the NF kappa B/rel protein-DNA complex was significantly enhanced 30 min after exposing thymocytes to methylprednisolone or etoposide, two agents well known to induce apoptosis in these cells. Expression of this DNA-binding activity therefore correlates with the subsequent occurrence of apoptosis. By analogy to other systems, it has been suggested that antioxidants such as pyrrolidine dithiocarbamate (PDTC) inhibit thymocyte apoptosis by preventing the activation of an NF kappa B/rel transcription factor. However, we have found that etoposide induces a very similar enhancement of the NF kappa B/rel DNA-binding activity in the presence or absence of PDTC, despite a pronounced inhibition of apoptotic DNA fragmentation in the former situation. Dithiocarbamates therefore do not exert their anti-apoptotic activity in thymocytes by inhibiting the activation of this transcription factor.


Sign in / Sign up

Export Citation Format

Share Document