scholarly journals Stimulation of protein synthesis in pituitary cells by phorbol esters and cyclic AMP. Evidence for rapid induction of a component of translational initiation.

1987 ◽  
Vol 262 (34) ◽  
pp. 16515-16523 ◽  
Author(s):  
MA Brostrom ◽  
KV Chin ◽  
C Cade ◽  
D Gmitter ◽  
CO Brostrom
1993 ◽  
Vol 289 (1) ◽  
pp. 71-79 ◽  
Author(s):  
W L Wong ◽  
M A Brostrom ◽  
G Kuznetsov ◽  
D Gmitter-Yellen ◽  
C O Brostrom

Thapsigargin, a tumour-promoting sesquiterpene lactone, selectively inhibits the Ca(2+)-ATPase responsible for Ca2+ accumulation by the endoplasmic reticulum (ER). Mobilization of ER-sequestered Ca2+ to the cytosol and to the extracellular fluid subsequently ensues, with concomitant alteration of cellular functions. Thapsigargin was found to serve as a rapid, potent and efficacious inhibitor of amino acid incorporation in cultured mammalian cells. At concentrations mobilizing cell-associated Ca2+ to the extracellular fluid, thapsigargin provoked extensive inhibition of protein synthesis within 10 min. The inhibition in GH3 pituitary cells involved the synthesis of almost all polypeptides, was not associated with increased cytosolic free Ca2+ concentration ([Ca2+]i), and was not reversed at high extracellular Ca2+. The transient rise in [Ca2+]i triggered by ionomycin was diminished by thapsigargin. Polysomes failed to accumulate in the presence of the drug, indicative of impaired translational initiation. With longer (1-3 h) exposures to thapsigargin, recovery of translational activity was observed accompanied by increased synthesis of the ER protein glucose-regulated stress protein 78 or immunoglobulin heavy-chain binding protein (‘GRP78/BiP’) and its mRNA. Such inductions were comparable with those observed previously with Ca2+ ionophores which mobilize the cation from all intracellular sequestered sites. Actin mRNA concentrations declined significantly during such treatments. In HepG2 cells processing and secretion of the glycoprotein alpha 1-antitrypsin were rapidly suppressed by thapsigargin. Ca2+ sequestered specifically by the ER is concluded to be essential for optimal protein synthesis and processing. These rapid effects of thapsigargin on mRNA translation, protein processing and gene expression should be considered when evaluating potential mechanisms by which this tumour promoter influences cellular events.


1992 ◽  
Vol 12 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Ulf H. Lerner ◽  
Gustaf Brunius ◽  
Thomas Modeer

Recombinant human interleukin-1β (IL-1β) and bradykinin (BK) synergistically stimulate prostaglandin E2 (PGE2) formation in human gingival fibroblasts cultured for 24 h. Neither BK or IL-1β per se, nor their combinations, caused any acute stimulation of cellular cyclic AMP accumulation. BK, but not IL-1β, caused a rapid, transient rise of intracellular Ca2+ concentration ([Ca2+]i), as assessed by recordings of fura-2 fluorescence in monolayers of prelabelled gingival fibroblasts. IL-1β did not change the effect of BK on [Ca2+]i. Ionomycin and A 23187, two calcium ionophores, synergistically potentiated the stimulatory effect of IL-1β on PGE2 formation. Three different phorbol esters known to activate protein kinase C also synergistically potentiated the action of IL-1β on PGE2 formation. Exogenously added arachidonic acid significantly enhanced the basal formation of PGE2. In IL-1β treated cells, the enhancement of PGE2 formation seen after addition of arachidonic acid, was synergistically upregulated by IL-1β. These data show that i) the synergistic interaction between IL-1β and BK on PGE2 formation is not due to an effect linked to an upregulation of cyclic AMP or [Ca2+]i; ii) the signal transducing mechanism by which BK interacts with IL-1β, however, may be linked to a BK induced stimulation of [Ca2+]i and/or protein kinase C; iii) the mechanism involved in the action of IL-1β may, at least partly, be due to enhancement of the biosynthesis of prostanoids mediated by an upregulation of cyclooxygenase activity.


1972 ◽  
Vol 54 (3) ◽  
pp. 483-492 ◽  
Author(s):  
N. T. DAVIES ◽  
K. A. MUNDAY ◽  
B. J. PARSONS

SUMMARY A study was made of the effects of cyclic AMP, theophylline, cycloheximide, puromycin and actinomycin D on the stimulation by angiotensin of fluid transport by sacs of rat colon mucosa. Cyclic AMP and theophylline, added together or separately, had no effect on fluid transport by colon sacs, suggesting that the stimulation of fluid transport after the application of angiotensin is not mediated through cyclic AMP. Cycloheximide and puromycin (used at concentrations which block colon protein synthesis by 50–90%) had no effect on fluid transport by control colon sacs, but completely blocked the stimulatory response of the colon to angiotensin. In contrast, actinomycin D (at a concentration which significantly inhibits RNA synthesis) did not affect fluid transport in control or angiotensin-stimulated colon sacs. The results are discussed in relation to the possibility that protein synthesis, at the stage of translation, is involved in the action of angiotensin on fluid transport by the colon.


1978 ◽  
Vol 170 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Felix H. A. Janszen ◽  
Brian A. Cooke ◽  
Maria J. A. Van Driel ◽  
Henk J. Van Der Molen

The mechanism of action of lutropin on the stimulation of the synthesis of a specific lutropin-induced protein in rat testis Leydig cells was investigated. Lutropin-induced protein has a mol.wt. of approx. 21000 and is detected by labelling the Leydig-cell proteins with [35S]methionine, followed by separation by polyacrylamide-gel electrophoresis and radioautography of the dried gel. The incorporation of35S into lutropin-induced protein was used as an estimate for the synthesis of the protein. Incubation of Leydig cells with dibutyryl cyclic AMP or cholera toxin also resulted in the stimulation of synthesis of the protein. Synthesis of lutropin-induced protein, when maximally stimulated with 100ng of lutropin/ml, could not be stimulated further by addition of dibutyryl cyclic AMP. Addition of 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, further increased synthesis of the protein in the presence of a submaximal dose of lutropin (10ng/ml) but not in the absence of lutropin or with maximal amounts of lutropin (100 and 1000ng/ml). Actinomycin D prevented the effect of lutropin on the stimulation of lutropin-induced protein synthesis when added immediately or 1h after the start of the incubation, but not when added after 5–6h. This is interpreted as reflecting that, after induction of mRNA coding for lutropin-induced protein, lutropin had no influence on the synthesis of the protein in the presence of actinomycin D. Synthesis of the protein was also stimulated in vivo by injection of choriogonadotropin into rats 1 day after hypophysectomy, and the time course of this stimulation of lutropin-induced protein synthesis in vivo was similar to that obtained by incubating Leydig cells in vitro with lutropin. From these results it is concluded that stimulation of lutropin-induced protein synthesis by lutropin is most probably mediated by cyclic AMP and involves synthesis of mRNA.


2007 ◽  
Vol 81 (12) ◽  
pp. 6669-6681 ◽  
Author(s):  
Michael J. Keller ◽  
Allen W. Wu ◽  
Janet I. Andrews ◽  
Patrick W. McGonagill ◽  
Eric E. Tibesar ◽  
...  

ABSTRACT The human cytomegalovirus (HCMV) major immediate-early (MIE) enhancer contains five functional cyclic AMP (cAMP) response elements (CRE). Because the CRE in their native context do not contribute appreciably to MIE enhancer/promoter activity in lytically infected human fibroblasts and NTera2 (NT2)-derived neurons, we postulated that they might have a role in MIE enhancer/promoter reactivation in quiescently infected cells. Here, we show that stimulation of the cAMP signaling pathway by treatment with forskolin (FSK), an adenylyl cyclase activator, greatly alleviates MIE enhancer/promoter silencing in quiescently infected NT2 neuronal precursors. The effect is immediate, independent of de novo protein synthesis, associated with the phosphorylation of ATF-1 serine 63 and CREB serine 133, dependent on protein kinase A (PKA) and the enhancer's CRE, and linked to viral-lytic-cycle advancement. Coupling of FSK treatment with the inhibition of either histone deacetylases or protein synthesis synergistically activates MIE gene expression in a manner suggesting that MIE enhancer/promoter silencing is optimally relieved by an interplay of multiple regulatory mechanisms. In contrast, MIE enhancer/promoter silence is not overcome by stimulation of the gamma interferon (IFN-γ) signaling pathway, despite the enhancer having two IFN-γ-activated-site-like elements. We conclude that stimulation of the cAMP/PKA signaling pathway drives CRE-dependent MIE enhancer/promoter activation in quiescently infected cells, thus exposing a potential mode of regulation in HCMV reactivation.


1977 ◽  
Vol 75 (2) ◽  
pp. 277-283 ◽  
Author(s):  
N. BARDEN ◽  
A. BETTERIDGE

The addition of luteinizing hormone releasing hormone (LH-RH) to cultures of monolayers of rat anterior pituitary cells was shown to increase both the concentrations of prostaglandins E1 and E2 (PGE) in the cells and the release of LH over similar ranges of concentrations of LH-RH (10−6 to 10−10 mol/l). The peak concentration of PGE was observed after 2·5 h. The stimulation of the level of PGE in the cells by LH-RH was completely inhibited by two inhibitors of prostaglandin synthetase, which only partially inhibited the stimulation of LH release. Therefore the increased concentration of PGE was not obligatory for the effect of LH-RH on LH release. It was also shown that monobutyryl cyclic AMP stimulated the intracellular concentration of PGE and it is suggested that the stimulation of PGE levels may be mediated by increased levels of cyclic AMP in the cells after the addition of LH-RH.


1990 ◽  
Vol 267 (1) ◽  
pp. 17-22 ◽  
Author(s):  
R N Kolesnick

Previous studies showed that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells [Kolesnick (1987) J. Biol. Chem. 262, 14525-14530]. In contrast, 1,2-diacylglycerol-stimulated phosphatidylcholine synthesis appeared independent of protein kinase C. The present studies compare phosphatidylcholine synthesis stimulated by these agents with inhibition via the cyclic AMP system. The potent phorbol ester phorbol 12-myristate 13-acetate (PMA, 10 nM) increased [32P]Pi incorporation into phosphatidylcholine at 30 min to 159 +/- 6% of control. The adenylate cyclase activator cholera toxin (CT; 10 nM) and the cyclic AMP analogue dibutyryl cyclic AMP (1 mM) abolished this effect. CT similarly abolished TRH-induced phosphatidylcholine, but not phosphatidylinositol, synthesis. This is the first report of inhibiton of receptor-mediated phosphatidylcholine synthesis by the cyclic AMP system. The 1,2-diacylglycerol 1,2-dioctanoylglycerol (diC8) also stimulated concentration-dependent phosphatidylcholine synthesis. DiC8 (3 micrograms/ml) induced an effect quantitatively similar to that of maximal concentrations of PMA and TRH, whereas a maximal diC8 concentration (30 micrograms/ml) stimulated an effect 3-4-fold greater than these other agents. CT decreased the effect of diC8 (3 micrograms/ml) by 80%. Higher diC8 concentrations overcame the CT inhibition. Similar results were obtained with dibutyryl cyclic AMP. Additional differences were found between low and high concentrations of diC8. Low concentrations of diC8 failed to induce additive phosphatidylcholine synthesis with maximal concentrations of PMA, whereas high concentrations were additive. Hence, low concentrations of 1,2-diacylglycerols appear to be regulated similarly to phorbol esters, and higher concentrations appear to act via a pathway unavailable to phorbol esters.


2009 ◽  
Vol 2 (6) ◽  
pp. 517-524 ◽  
Author(s):  
Adel B. Korkor ◽  
Richard W. Gray ◽  
Helen L. Henry ◽  
Jack G. Kleinman ◽  
Samuel S. Blumenthal ◽  
...  

1979 ◽  
Vol 182 (3) ◽  
pp. 717-725 ◽  
Author(s):  
Alice Dazord ◽  
Dominique Gallet ◽  
Helene Cohen ◽  
Jose M. Saez

The mechanism of corticotropin stimulation of the synthesis of a specific rat adrenal cytosolic protein was investigated. This protein (protein E) has a mol.wt. of approx. 30000. It is detected by polyacrylamide-gel electrophoresis of cytosol prepared from adrenal slices from rats treated with corticotropin in vivo and control rats, the slices being incubated with [3H]- and [14C]-leucine respectively. In rats 1–15 days after hypophysectomy, corticotropin, like dibutyryl cyclic AMP, induces an increase in protein E similar to that induced in control rats, even though both compounds no longer stimulate total protein synthesis. Corticotropin stimulation of protein E synthesis is mediated by cyclic AMP but not by corticosterone, since aminoglutethimide, a steroidogenic inhibitor, does not affect corticotropin stimulation, and dexamethasone alone has no effect. Actinomycin D, when injected in vivo 1h before or after corticotropin injection, prevents the effect of corticotropin on protein E synthesis, which is interpreted as evidence that mRNA synthesis is necessary for the stimulation of protein E synthesis. When injected more than 2h after corticotropin, actinomycin D does not prevent corticotropin stimulation of protein E synthesis, but completely blocks corticotropin stimulation of total protein synthesis. This is interpreted as meaning that, after stimulation of mRNA coding for protein E, corticotropin has no effect on the synthesis of protein E. On the other hand, corticotropin stimulation of protein E synthesis persists after hypophysectomy even though it no longer stimulates total protein synthesis. These data suggest that the factor(s) involved in the synthesis of protein E are more stable than those involved in total protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document