scholarly journals The final step in the de novo biosynthesis of platelet-activating factor. Properties of a unique CDP-choline:1-alkyl-2-acetyl-sn-glycerol choline-phosphotransferase in microsomes from the renal inner medulla of rats.

1987 ◽  
Vol 262 (6) ◽  
pp. 2520-2527 ◽  
Author(s):  
D.S. Woodard ◽  
T.C. Lee ◽  
F. Snyder
1996 ◽  
Vol 74 (3) ◽  
pp. 347-354 ◽  
Author(s):  
Andre Siegel ◽  
R. Roy Baker

The activities of enzymes in platelet activating factor (PAF) biosynthetic pathways were analyzed in hippocampal and cerebral cortical regions of normal and ischemic gerbil brain to assess changes in enzyme activities and potential modulators that could explain the accentuated production of PAF seen in ischemia. Global forebrain ischemia was produced by bilateral carotid artery ligation, and the effectiveness of the ligation was shown by free fatty acid release and ATP depletion. Specific activities of 1-alkyl-2-acetyl-sn-glycerol (AAG) choline phosphotransferase, 1-alkyl-sn-glycero-3-phosphate (AGP) acetyl transferase, and 1-alkyl-sn-glycero-3-phosphocholine (lyso PAF) acetyl transferase in tissue homogenates were in the ratio 4:1:0.1, respectively. Sham-operated and ischemic or ischemic–reperfused tissues showed similar activities for individual enzymes, indicating that enzyme levels or activation states did not change in ischemic or reperfused tissues. However, small metabolites (relevant to ischemia) added to the in vitro assays did modify enzyme activities. Physiological concentrations of MgATP severely inhibited AGP acetyl transferase activity, and this resulted in the ratio of AGP acyl transferase to AGP acetyl transferase activities changing from 48:1 in the presence of 2.5 mM MgATP to 6:1 in the absence of MgATP. This suggests that falling ATP levels in cerebral ischemia may promote the de novo pathway of PAF biosynthesis by releasing inhibition of AGP acetyl transferase. Lyso PAF acetyl transferase was much less active than AGP acetyl transferase and was also inhibited by MgATP. AAG choline phosphotransferase was not inhibited by MgATP but was inhibited by calcium. However the superior specific activity of the choline phosphotransferase in comparison with the AGP acetyl transferase suggested that the lowered choline phosphotransferase activity in the presence of rising intracellular calcium would not seriously compromise the synthesis of PAF by the de novo route. Both acetyl transferase enzymes were also inhibited by oleoyl CoA.Key words: gerbil, cerebral ischemia, platelet activating factor, enzymes.


1986 ◽  
Vol 251 (1) ◽  
pp. F1-F11 ◽  
Author(s):  
D. Schlondorff ◽  
R. Neuwirth

Platelet-activating factor (PAF) represents a group of phospholipids with the basic structure of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine. A number of different cells are capable of producing PAF in response to various stimuli. The initial step of PAF formation is activation of phospholipase A2 in a calcium-dependent manner, yielding lyso-PAF. During this step arachidonic acid is also released and can be converted to its respective cyclooxygenase and lipoxygenase products. The lyso-PAF generated is then acetylated in position 2 of the glycerol backbone by a coenzyme A (CoA)-dependent acetyltransferase. An additional pathway may exist whereby PAF is generated de novo from 1-alkyl-2-acetyl-sn-glycerol by phosphocholine transferase. PAF inactivation in cells and blood is by specific acetylhydrolases. PAF exhibits a variety of biological activities including platelet and leukocyte aggregation and activation, increased vascular permeability, respiratory distress, decreased cardiac output, and hypotension. In the kidney PAF can produce decreases in blood flow, glomerular filtration, and fluid and electrolyte excretion. Intrarenal artery injection of PAF may also result in glomerular accumulation of platelets and leukocytes and mild proteinuria. PAF increases prostaglandin formation in the isolated kidney and in cultured glomerular mesangial cells. PAF also causes contraction of mesangial cells. Upon stimulation with calcium ionophore the isolated kidney, isolated glomeruli and medullary cells, and cultured mesangial cells are capable of producing PAF. The potential role for PAF in renal physiology and pathophysiology requires further investigation that may be complicated by 1) the multiple interactions of PAF, prostaglandins, and leukotrienes and 2) the autocoid nature of PAF, which may restrict its action to its site of generation.


2021 ◽  
Vol 22 (13) ◽  
pp. 7236
Author(s):  
Endah Dwi Hartuti ◽  
Takaya Sakura ◽  
Mohammed S. O. Tagod ◽  
Eri Yoshida ◽  
Xinying Wang ◽  
...  

Plasmodium falciparum’s resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.


2021 ◽  
Vol 22 (6) ◽  
pp. 3115
Author(s):  
Lorenzo Germelli ◽  
Eleonora Da Pozzo ◽  
Chiara Giacomelli ◽  
Chiara Tremolanti ◽  
Laura Marchetti ◽  
...  

Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery—in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1469
Author(s):  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Mathias Heikenwalder ◽  
Oliver J. Müller ◽  
Adam J. Rose

Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.


Author(s):  
Bastian Broschwitz ◽  
Lorena Prager ◽  
Tamara Pokorny ◽  
Joachim Ruther

Sign in / Sign up

Export Citation Format

Share Document