scholarly journals Transcriptional regulation of the interleukin 2 gene by glucocorticoid hormones. Role of steroid receptor and antigen-responsive 5'-flanking sequences.

1990 ◽  
Vol 265 (14) ◽  
pp. 8075-8080
Author(s):  
A Vacca ◽  
S Martinotti ◽  
I Screpanti ◽  
M Maroder ◽  
M P Felli ◽  
...  
2021 ◽  
Vol 22 (5) ◽  
pp. 2409
Author(s):  
Anastasia A. Bizyaeva ◽  
Dmitry A. Bunin ◽  
Valeria L. Moiseenko ◽  
Alexandra S. Gambaryan ◽  
Sonja Balk ◽  
...  

Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5′- and 3′-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385–hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Marie-Christine Carpentier ◽  
Cécile Bousquet-Antonelli ◽  
Rémy Merret

The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5′monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5′P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5′P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.


2007 ◽  
Vol 31 (s1) ◽  
pp. S36-S42 ◽  
Author(s):  
Takayuki Uchimoto ◽  
Sakae Itoga ◽  
Masahiko Nezu ◽  
Masahiko Sunaga ◽  
Takeshi Tomonaga ◽  
...  

1999 ◽  
Vol 4 (6) ◽  
pp. 363-373 ◽  
Author(s):  
Shiho Tsujino ◽  
Tadaaki Miyazaki ◽  
Atsuo Kawahara ◽  
Michiyuki Maeda ◽  
Tadatsugu Taniguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document