scholarly journals Two Aspartate Transport Systems in Escherichia coli

1971 ◽  
Vol 246 (23) ◽  
pp. 7373-7382
Author(s):  
William W. Kay
2008 ◽  
Vol 77 (3) ◽  
pp. 1155-1164 ◽  
Author(s):  
Mourad Sabri ◽  
Sébastien Houle ◽  
Charles M. Dozois

ABSTRACT Roles of the ZnuACB and ZupT transporters were assessed in Escherichia coli K-12 and uropathogenic E. coli (UPEC) CFT073. K-12 and CFT073 Δznu ΔzupT mutants demonstrated decreased 65Zn2+ uptake and growth in minimal medium. CFT073Δznu demonstrated an intermediate decrease of 65Zn2+ uptake and growth in minimal medium, whereas the CFT073ΔzupT mutant grew as well as CFT073 and exhibited a less marked decrease in 65Zn2+ uptake. CFT073 mutants grew as well as the wild type in human urine. In competitive infections in CBA/J mice, the ΔzupT mutant demonstrated no disadvantage during urinary tract infection. In contrast, the UPEC Δznu and Δznu ΔzupT strains demonstrated significantly reduced numbers in the bladders (mean 4.4- and 30-fold reductions, respectively) and kidneys (mean 41- and 48-fold reductions, respectively). In addition, in single-strain infection experiments, the Δznu and Δznu ΔzupT mutants were reduced in the kidneys (P = 0.0012 and P < 0.0001, respectively). Complementation of the CFT073 Δznu ΔzupT mutant with the znuACB genes restored growth in Zn-deficient medium and bacterial numbers in the bladder and kidneys. The loss of the zinc transport systems decreased both motility and resistance to hydrogen peroxide, which could be restored by supplementation with zinc. Overall, the results indicate that Znu and ZupT are required for growth in zinc limited-conditions, that Znu is the predominant zinc transporter, and that the loss of Znu and ZupT has a cumulative effect on fitness during UTI, which may in part be due to reduced resistance to oxidative stress and motility.


1978 ◽  
Vol 72 (3) ◽  
pp. 283-295 ◽  
Author(s):  
D B Rhoads ◽  
W Epstein

Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walters, and W. Epstein. 1976. J. Gen. Physiol. 67:325-341). The TrkA and TrkD systems are inhibited by high intracellular K, the TrkF system is stimulated by intracellular K, whereas the Kdp system is inhibited by external K when intracellular K is high. All four systems mediate net K uptake in response to osmotic upshock. Exchange by the Kdp and TrkA systems requires ATP but is not dependent on the protonmotive force. Energy requirements for the Kdp system are thus identical whether measured as net K uptake or K exchange, whereas the TrkA system differs in that it is dependent on the protonmotive force only for net K uptake. We suggest that in both the Kpd and TrkA systems formation of a phosphorylated intermediate is necessary for all K transport, although exchange transport may not consume energy. The protonmotive-force dependence of the TrkA system is interpreted as a regulatory influence, limiting this system to exchange except when the protonmotive force is high.


1977 ◽  
Vol 168 (1) ◽  
pp. 15-22 ◽  
Author(s):  
P J F Henderson ◽  
R A Giddens

The following observations showed that 2-deoxy-D-galactose is a useful tool for the isolation and elucidation of the activity of one system for galactose uptake into Escherichia coli. 1. 2-Deoxygalactose, which is not a substrate for growth of E. coli, was transported into strains of the organism induced for galactose transport. 2. By using appropriate mutants it was shown that 2-deoxygalactose is a much better substrate for the galactose-transport system than for the methyl galactoside-transport system. This was confirmed by the results of mutual inhibition studies with substrates of each transport system. 3. The glucose-, arabinose- or lactose-transport systems did not effect significant transport of 2-deoxygalactose. 4. Like other substrates of the galactose-transport system, 2-deoxygalactose promoted effective proton uptake into de-energized suspensions of appropriate E. coli strains. 5. The S183 series of E. coli mutants were found to contain a constitutive galactose-transport system, if 2-deoxygalactose transport is used as one criterion for such activity.


1977 ◽  
Vol 162 (2) ◽  
pp. 309-320 ◽  
Author(s):  
P J F Henderson ◽  
R A Giddens ◽  
M C Jones-Mortimer

1. Strains of Escherichia coli K12 were made that are unable to assimilate glucose by the phosphotransferase system, since they lack the glucose-specific components specified by the genes ptsG and ptsM. 2. Derivative organisms lacking the methyl galactoside or galactose-specific transport system were examined for their ability to transport galactose, d-fucose, methyl beta-D-galactoside, glucose, 2-deoxy-D-glucose and methyl alpha-D-glucoside. 3. Galactose, glucose and to a lesser extent fucose are substrates for both transport systems. 4. 2-Deoxyglucose is transported on the galactose-specific but not the methyl galactoside system. 5. The ability of sugars to elicit anaerobic proton transport is associated with the galactose-specific, but not with the methyl galactoside transport activity. Hence a chemiosmotic mechanism of energization is likely to apply to the former but not to the latter. Alternatively the methyl galactoside system may be switched off under certain conditions, which would indicate a novel regulatory mechanism. 6. Details of the procedure for the derivation of strains may be obtained from the authors, and have been deposited as Supplementary Publication SUP 50074 (8 pages at the) British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1977), 161,1.


Sign in / Sign up

Export Citation Format

Share Document