scholarly journals Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. VOLUME 283 (2008) PAGES 13983-13991

2008 ◽  
Vol 283 (36) ◽  
pp. 25104
Author(s):  
Masanori Funabashi ◽  
Nobutaka Funa ◽  
Sueharu Horinouchi
2005 ◽  
Vol 187 (23) ◽  
pp. 8149-8155 ◽  
Author(s):  
Nobutaka Funa ◽  
Masanori Funabashi ◽  
Yasuo Ohnishi ◽  
Sueharu Horinouchi

ABSTRACT Dihydroxyphenylalanine (DOPA) melanins formed from tyrosine by tyrosinases are found in microorganisms, plants, and animals. Most species in the soil-dwelling, gram-positive bacterial genus Streptomyces produce DOPA melanins and melanogenesis is one of the characteristics used for taxonomy. Here we report a novel melanin biosynthetic pathway involving a type III polyketide synthase (PKS), RppA, and a cytochrome P-450 enzyme, P-450mel, in Streptomyces griseus. In vitro reconstitution of the P-450mel catalyst with spinach ferredoxin-NADP+ reductase/ferredoxin revealed that it catalyzed oxidative biaryl coupling of 1,3,6,8-tetrahydroxynaphthalene (THN), which was formed from five molecules of malonyl-coenzyme A by the action of RppA to yield 1,4,6,7,9,12-hexahydroxyperylene-3,10-quinone (HPQ). HPQ readily autopolymerized to generate HPQ melanin. Disruption of either the chromosomal rppA or P-450mel gene resulted in abolishment of the HPQ melanin synthesis in S. griseus and a decrease in the resistance of spores to UV-light irradiation. These findings show that THN-derived melanins are not exclusive in eukaryotic fungal genera but an analogous pathway is conserved in prokaryotic streptomycete species as well. A vivid contrast in THN melanin biosynthesis between streptomycetes and fungi is that the THN synthesized by the action of a type III PKS is used directly for condensation in the former, while the THN synthesized by the action of type I PKSs is first reduced and the resultant 1,8-dihydroxynaphthalene is then condensed in the latter.


2006 ◽  
Vol 2 (9) ◽  
pp. 494-502 ◽  
Author(s):  
Michael B Austin ◽  
Tamao Saito ◽  
Marianne E Bowman ◽  
Stephen Haydock ◽  
Atsushi Kato ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 753-762
Author(s):  
Delong Kan ◽  
Di Zhao ◽  
Pengfei Duan

AbstractStudies have shown that abundant and various flavonoids accumulate in chili pepper (Capsicum), but there are few reports on the genes that govern chili pepper flavonoid biosynthesis. Here, we report the comprehensive identification of genes encoding type III polyketide synthase (PKS), an important enzyme catalyzing the generation of flavonoid backbones. In total, 13, 14 and 13 type III PKS genes were identified in each genome of C. annuum, C. chinense and C. baccatum, respectively. The phylogeny topology of Capsicum PKSs is similar to those in other plants, as it showed two classes of genes. Within each class, clades can be further identified. Class II genes likely encode chalcone synthase (CHS) as they are placed together with the Arabidopsis CHS gene, which experienced extensive expansions in the genomes of Capsicum. Interestingly, 8 of the 11 Class II genes form three clusters in the genome of C. annuum, which is likely the result of tandem duplication events. Four genes are not expressed in the tissues of C. annuum, three of which are located in the clusters, indicating that a portion of genes was pseudogenized after tandem duplications. Expression of two Class I genes was complementary to each other, and all the genes in Class II were not expressed in roots of C. annuum. Two Class II genes (CA00g90790 and CA05g17060) showed upregulated expression as the chili pepper leaves matured, and two Class II genes (CA05g17060 and CA12g20070) showed downregulated expression with the maturation of fruits, consistent with flavonoid accumulation trends in chili pepper as reported previously. The identified genes, sequences, phylogeny and expression information collected in this article lay the groundwork for future studies on the molecular mechanisms of chili pepper flavonoid metabolism.


Planta ◽  
2009 ◽  
Vol 229 (5) ◽  
pp. 1077-1086 ◽  
Author(s):  
Lan-Qing Ma ◽  
Yan-Wu Guo ◽  
Dong-Yao Gao ◽  
Dong-Ming Ma ◽  
You-Nian Wang ◽  
...  

Planta ◽  
2017 ◽  
Vol 247 (2) ◽  
pp. 527-541 ◽  
Author(s):  
Li Li ◽  
Misbah Aslam ◽  
Fazle Rabbi ◽  
Mark C. Vanderwel ◽  
Neil W. Ashton ◽  
...  

ChemBioChem ◽  
2011 ◽  
Vol 12 (14) ◽  
pp. 2166-2176 ◽  
Author(s):  
Takayuki Hayashi ◽  
Yuta Kitamura ◽  
Nobutaka Funa ◽  
Yasuo Ohnishi ◽  
Sueharu Horinouchi

Sign in / Sign up

Export Citation Format

Share Document