Fatty Acyl-AMP Ligase Involvement in the Production of Alkylresorcylic Acid by a Myxococcus xanthus Type III Polyketide Synthase

ChemBioChem ◽  
2011 ◽  
Vol 12 (14) ◽  
pp. 2166-2176 ◽  
Author(s):  
Takayuki Hayashi ◽  
Yuta Kitamura ◽  
Nobutaka Funa ◽  
Yasuo Ohnishi ◽  
Sueharu Horinouchi
2009 ◽  
Vol 191 (15) ◽  
pp. 4916-4923 ◽  
Author(s):  
Chiaki Nakano ◽  
Hiroki Ozawa ◽  
Genki Akanuma ◽  
Nobutaka Funa ◽  
Sueharu Horinouchi

ABSTRACT Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.


2013 ◽  
Vol 23 (20) ◽  
pp. 5637-5640 ◽  
Author(s):  
Makoto Hashimoto ◽  
Satomi Ishida ◽  
Yasuyo Seshime ◽  
Katsuhiko Kitamoto ◽  
Isao Fujii

Author(s):  
Dengfeng Yang ◽  
Takahiro Mori ◽  
Takashi Matsui ◽  
Makoto Hashimoto ◽  
Hiroyuki Morita ◽  
...  

CsyB fromAspergillus oryzaeis a novel type III polyketide synthase that catalyzes the formation of csypyrone B1 [4-(3-acetyl-4-hydroxy-2-oxo-2H-pyran-6-yl)butyric acid] from fatty acyl-CoA, malonyl-CoA and acetoacetyl-CoA. Recombinant CsyB expressed inEscherichia coliwas crystallized by the sitting-drop vapour-diffusion method. The crystals belonged to spaceP21, with unit-cell parametersa= 70.0,b= 104.8,c= 73.5 Å, β = 114.4°.


2004 ◽  
Vol 11 (9) ◽  
pp. 1177-1178 ◽  
Author(s):  
Shiou-Chuan Tsai

2006 ◽  
Vol 2 (9) ◽  
pp. 494-502 ◽  
Author(s):  
Michael B Austin ◽  
Tamao Saito ◽  
Marianne E Bowman ◽  
Stephen Haydock ◽  
Atsushi Kato ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 753-762
Author(s):  
Delong Kan ◽  
Di Zhao ◽  
Pengfei Duan

AbstractStudies have shown that abundant and various flavonoids accumulate in chili pepper (Capsicum), but there are few reports on the genes that govern chili pepper flavonoid biosynthesis. Here, we report the comprehensive identification of genes encoding type III polyketide synthase (PKS), an important enzyme catalyzing the generation of flavonoid backbones. In total, 13, 14 and 13 type III PKS genes were identified in each genome of C. annuum, C. chinense and C. baccatum, respectively. The phylogeny topology of Capsicum PKSs is similar to those in other plants, as it showed two classes of genes. Within each class, clades can be further identified. Class II genes likely encode chalcone synthase (CHS) as they are placed together with the Arabidopsis CHS gene, which experienced extensive expansions in the genomes of Capsicum. Interestingly, 8 of the 11 Class II genes form three clusters in the genome of C. annuum, which is likely the result of tandem duplication events. Four genes are not expressed in the tissues of C. annuum, three of which are located in the clusters, indicating that a portion of genes was pseudogenized after tandem duplications. Expression of two Class I genes was complementary to each other, and all the genes in Class II were not expressed in roots of C. annuum. Two Class II genes (CA00g90790 and CA05g17060) showed upregulated expression as the chili pepper leaves matured, and two Class II genes (CA05g17060 and CA12g20070) showed downregulated expression with the maturation of fruits, consistent with flavonoid accumulation trends in chili pepper as reported previously. The identified genes, sequences, phylogeny and expression information collected in this article lay the groundwork for future studies on the molecular mechanisms of chili pepper flavonoid metabolism.


Planta ◽  
2009 ◽  
Vol 229 (5) ◽  
pp. 1077-1086 ◽  
Author(s):  
Lan-Qing Ma ◽  
Yan-Wu Guo ◽  
Dong-Yao Gao ◽  
Dong-Ming Ma ◽  
You-Nian Wang ◽  
...  

Planta ◽  
2017 ◽  
Vol 247 (2) ◽  
pp. 527-541 ◽  
Author(s):  
Li Li ◽  
Misbah Aslam ◽  
Fazle Rabbi ◽  
Mark C. Vanderwel ◽  
Neil W. Ashton ◽  
...  

Author(s):  
Hiroyuki Morita ◽  
Kiyofumi Wanibuchi ◽  
Ryohei Kato ◽  
Shigetoshi Sugio ◽  
Ikuro Abe

Sign in / Sign up

Export Citation Format

Share Document