Triphenylphosphine oxide adducts of diphenylantimony(V) and diorganotin(IV) Lewis acids: structures of SnPh2Cl2·OPPh3, SnPh2Cl2·2OPPh3, SnPh2Br2·OPPh3 and SbPh2Cl3·OPPh3

2000 ◽  
Vol 612 (1-2) ◽  
pp. 53-60 ◽  
Author(s):  
D Cunningham
Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3014
Author(s):  
Zoran Mazej

Recent development in the synthesis and characterization of noble-gas compounds is reviewed, i.e., noble-gas chemistry reported in the last five years with emphasis on the publications issued after 2017. XeF2 is commercially available and has a wider practical application both in the laboratory use and in the industry. As a ligand it can coordinate to metal centers resulting in [M(XeF2)x]n+ salts. With strong Lewis acids, XeF2 acts as a fluoride ion donor forming [XeF]+ or [Xe2F3]+ salts. Latest examples are [Xe2F3][RuF6]·XeF2, [Xe2F3][RuF6] and [Xe2F3][IrF6]. Adducts NgF2·CrOF4 and NgF2·2CrOF4 (Ng = Xe, Kr) were synthesized and structurally characterized at low temperatures. The geometry of XeF6 was studied in solid argon and neon matrices. Xenon hexafluoride is a well-known fluoride ion donor forming various [XeF5]+ and [Xe2F11]+ salts. A large number of crystal structures of previously known or new [XeF5]+ and [Xe2F11]+ salts were reported, i.e., [Xe2F11][SbF6], [XeF5][SbF6], [XeF5][Sb2F11], [XeF5][BF4], [XeF5][TiF5], [XeF5]5[Ti10F45], [XeF5][Ti3F13], [XeF5]2[MnF6], [XeF5][MnF5], [XeF5]4[Mn8F36], [Xe2F11]2[SnF6], [Xe2F11]2[PbF6], [XeF5]4[Sn5F24], [XeF5][Xe2F11][CrVOF5]·2CrVIOF4, [XeF5]2[CrIVF6]·2CrVIOF4, [Xe2F11]2[CrIVF6], [XeF5]2[CrV2O2F8], [XeF5]2[CrV2O2F8]·2HF, [XeF5]2[CrV2O2F8]·2XeOF4, A[XeF5][SbF6]2 (A = Rb, Cs), Cs[XeF5][BixSb1-xF6]2 (x = ~0.37–0.39), NO2XeF5(SbF6)2, XeF5M(SbF6)3 (M = Ni, Mg, Zn, Co, Cu, Mn and Pd) and (XeF5)3[Hg(HF)]2(SbF6)7. Despite its extreme sensitivity, many new XeO3 adducts were synthesized, i.e., the 15-crown adduct of XeO3, adducts of XeO3 with triphenylphosphine oxide, dimethylsulfoxide and pyridine-N-oxide, and adducts between XeO3 and N-bases (pyridine and 4-dimethylaminopyridine). [Hg(KrF2)8][AsF6]2·2HF is a new example of a compound in which KrF2 serves as a ligand. Numerous new charged species of noble gases were reported (ArCH2+, ArOH+, [ArB3O4]+, [ArB3O5]+, [ArB4O6]+, [ArB5O7]+, [B12(CN)11Ne]−). Molecular ion HeH+ was finally detected in interstellar space. The discoveries of Na2He and ArNi at high pressure were reported. Bonding motifs in noble-gas compounds are briefly commented on in the last paragraph of this review.


2018 ◽  
Author(s):  
Katherine Marczenko ◽  
James Goettel ◽  
Gary Schrobilgen

Oxygen coordination to the Xe(VI) atom of XeO<sub>3</sub> was observed in its adducts with triphenylphosphine oxide, dimethylsulfoxide, pyridine-N-oxide, and acetone. The crystalline adducts were characterized by low-temperature, single-crystal X-ray diffraction and Raman spectroscopy. Unlike solid XeO<sub>3</sub>, which detonates when mechanically or thermally shocked, the solid [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3</sub>, [(CH<sub>3</sub>)<sub>2</sub>SO]<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub>,<sub> </sub>and (C<sub>5</sub>H<sub>5</sub>NO)<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> adducts are insensitive to mechanical shock, but undergo rapid deflagration when ignited by a flame. Both [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3 </sub>and (C<sub>5</sub>H<sub>5</sub>NO)<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> are air-stable whereas [(CH<sub>3</sub>)<sub>2</sub>SO]<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> slowly decomposes over several days and [(CH<sub>3</sub>)<sub>2</sub>CO]<sub>3</sub>XeO<sub>3</sub> undergoes adduct dissociation at room temperature. The xenon coordination sphere of [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3</sub> is a distorted square pyramid which provides the first example of a five-coordinate XeO<sub>3</sub> adduct. The xenon coordination spheres of the remaining adducts are distorted octahedra comprised of three Xe---O secondary contacts that are approximately trans to the primary Xe–O bonds of XeO<sub>3</sub>. Quantum-chemical calculations were used to assess the Xe---O adduct bonds, which are predominantly electrostatic σ-hole bonds between the nucleophilic oxygen atoms of the bases and the σ-holes of the xenon atoms.


2019 ◽  
Vol 16 (7) ◽  
pp. 1024-1031
Author(s):  
Diparjun Das ◽  
Kalyani Rajkumari ◽  
Lalthazuala Rokhum

Aim and Objective: Sustainable production of fine chemicals both in industries and pharmaceuticals heavily depends on the application of solid-phase synthesis route coupled with microwave technologies due to their environmentally benign nature. In this report, a microwave-assisted esterification reaction using polymer-bound triphenylphosphine and 4,4′-dinitroazobenzene reagent system was investigated. Materials and Methods: The solvents were obtained from Merck India. Polymer-bound triphenylphosphine (~3 mmol triphenylphosphine moiety/g) was acquired from Sigma-Aldrich. The progress of the reaction was observed by thin-layer chromatography. All the reactions were performed in Milestones StartSYNTH microwave. The NMR spectra were recorded on Bruker Avance III 300, 400, and 500 MHz FT NMR Spectrometers. Using azo compound and polymer-bound triphenyl phosphine as a coupling reagent, esterification of different carboxylic acids with alcohols was performed under microwave irradiation. Results: Esterification of benzoic acid with 1-propanol under microwave irradiation gave a high yield of 92% propyl benzoate in 60 minutes only. Isolation of the ester products was relatively simple as both the byproducts polymer-bound triphenylphosphine oxide and hydrazine could be removed by simple filtration. The rates of reactions were found to be directly proportional to the pKa of the benzoic acids. Conclusion: 4,4′-Dinitroazobenzene was introduced as a novel coupling reagent, in conjugation with polymer-bound triphenylphosphine, for esterification reactions under microwave irradiation. The low moisture sensitivity of the reaction system, easy separation of the byproducts, and column chromatographyfree isolation of esters help our methods with application significance, particularly from the ‘Sustainable Chemistry’ perspective.


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 38-49
Author(s):  
Lakhdar Benhamed ◽  
Sidi Mohamed Mekelleche ◽  
Wafaa Benchouk

Experimentally, a reversal of chemoselectivity has been observed in catalyzed Diels–Alder reactions of α,β-unsaturated aldehydes (e.g., (2E)-but-2-enal) and ketones (e.g., 2-hexen-4-one) with cyclopentadiene. Indeed, using the triflimidic Brønsted acid Tf2NH as catalyst, the reaction gave a Diels–Alder adduct derived from α,β-unsaturated ketone as a major product. On the other hand, the use of tris(pentafluorophenyl)borane B(C6F5)3 bulky Lewis acid as catalyst gave mainly the cycloadduct of α,β-unsaturated aldehyde as a major product. Our aim in the present work is to put in evidence the role of the catalyst in the reversal of the chemoselectivity of the catalyzed Diels–Alder reactions of (2E)-but-2-enal and 2-Hexen-4-one with cyclopentadiene. The calculations were performed at the ωB97XD/6-311G(d,p) level of theory and the solvent effects of dichloromethane were taken into account using the PCM solvation model. The obtained results are in good agreement with experimental outcomes.


2021 ◽  
Author(s):  
Pablo Simon Marques ◽  
Giacomo Londi ◽  
Brett Yurash ◽  
Thuc-Quyen Nguyen ◽  
Stephen Barlow ◽  
...  

We report on computational studies of the potential of three borane Lewis acids (LAs) (B(C6F5)3 (BCF), BF3, and BBr3) to form stable adducts and/or to generate positive polarons with three...


Sign in / Sign up

Export Citation Format

Share Document