scholarly journals Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic

2001 ◽  
Vol 172 (1-2) ◽  
pp. 91-115 ◽  
Author(s):  
R.L. Phillips ◽  
A. Grantz
2013 ◽  
Vol 7 (2) ◽  
pp. 1313-1358 ◽  
Author(s):  
S. E. L. Howell ◽  
T. Wohlleben ◽  
A. Komarov ◽  
L. Pizzolato ◽  
C. Derksen

Abstract. Record low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a level that was nearly exceeded in 2012 (150 × 103 km2). These values eclipsed previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2) and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the driving processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was driven by positive July surface air temperature (SAT) anomalies that facilitated rapid melt, coupled with atmospheric circulation in July and August that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also driven by positive July SAT anomalies (with coincident rapid melt) but further ice decline was temporarily mitigated by atmospheric circulation in August and September which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, evidence of both preconditioned thinner Arctic Ocean MYI flowing into CAA and maximum landfast first-year ice (FYI) thickness within the CAA was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to positive SAT forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.


2017 ◽  
Author(s):  
Laura Gemery ◽  
Thomas M. Cronin ◽  
Robert K. Poirier ◽  
Christof Pearce ◽  
Natalia Barrientos ◽  
...  

Abstract. Late Quaternary paleoceanographic changes in the central Arctic Ocean were reconstructed from a multicore and gravity core from the Lomonosov Ridge (Arctic Ocean) collected during the 2014 SWERUS-C3 Expedition. Ostracode assemblages dated by accelerator mass spectrometry (AMS) indicate changing sea-ice conditions and warm Atlantic Water (AW) inflow to the Arctic Ocean from ~ 50 ka to present. Key taxa used as environmental indicators include Acetabulastoma arcticum (perennial sea ice), Polycope spp. (productivity and sea ice), Krithe hunti (partially sea-ice free conditions, deep water inflow), and Rabilimis mirabilis (high nutrient, AW inflow). Results indicate seasonally sea-ice free conditions during Marine Isotope Stage (MIS) 3 (~ 57–29 ka), rapid deglacial changes in water mass conditions (15–11 ka), seasonally sea-ice free conditions during the early Holocene (~ 10–7 ka) and perennial sea ice during the late Holocene. Comparisons with faunal records from other cores from the Mendeleev and Lomonosov Ridges suggest generally similar patterns, although sea-ice cover during the last glacial maximum may have been less extensive at the southern Lomonosov Ridge at our core site (~ 85.15° N, 152° E) than farther north and towards Greenland. The new data also provide evidence for abrupt, large-scale shifts in ostracode species depth and geographical distributions during rapid climatic transitions.


2015 ◽  
Vol 28 (12) ◽  
pp. 4971-4979 ◽  
Author(s):  
Masayo Ogi ◽  
Bunmei Taguchi ◽  
Meiji Honda ◽  
David G. Barber ◽  
Søren Rysgaard

Abstract Contemporary climate science seeks to understand the rate and magnitude of a warming global climate and how it impacts regional variability and teleconnections. One of the key drivers of regional climate is the observed reduction in end of summer sea-ice extent over the Arctic. Here the authors show that interannual variations between the September Arctic sea-ice concentration, especially in the East Siberian Sea, and the maximum Okhotsk sea-ice extent in the following winter are positively correlated, which is not explained by the recent warming trend only. An increase of sea ice both in the East Siberian Sea and the Okhotsk Sea and corresponding atmospheric patterns, showing a seesaw between positive anomalies of sea level pressures over the Arctic Ocean and negative anomalies over the midlatitudes, are related to cold anomalies over the high-latitude Eurasian continent. The patterns of atmospheric circulation and air temperatures are similar to those of the annually integrated Arctic Oscillation (AO). The negative annual AO forms colder anomalies in autumn sea surface temperatures both over the East Siberian Sea and the Okhotsk Sea, which causes heavy sea-ice conditions in both seas through season-to-season persistence.


2021 ◽  
pp. 1-56

Abstract The extreme Arctic sea ice minima in the 21st century have been attributed to multiple factors, such as anomalous atmospheric circulation, excess solar radiation absorbed by open ocean, and thinning sea ice in a warming world. Most likely it is the combination of these factors that drive the extreme sea ice minima, but it has not been quantified, how the factors rank in setting the conditions for these events. To address this question, the sea ice budget of an Arctic regional sea ice-ocean model forced by atmospheric reanalysis data is analyzed to assess the development of the observed sea ice minima. Results show that the ice area difference in the years 2012, 2019, and 2007 is driven to over 60% by the difference in summertime sea ice area loss due to air-ocean heat flux over open water. Other contributions are small. For the years 2012 and 2020 the situation is different and more complex. The air-ice heat flux causes more sea ice area loss in summer 2020 than in 2012 due to warmer air temperatures, but this difference in sea ice area loss is compensated by reduced advective sea ice loss out of the Arctic Ocean mainly caused by the relaxation of the Arctic Dipole. The difference in open water area in early August leads to different air-ocean heat fluxes, which distinguishes the sea ice minima in 2012 and 2020. Further, sensitivity experiments indicate that both the atmospheric circulation associated with the Arctic Dipole and extreme storms are essential conditions for a new low record of sea ice extent.


2014 ◽  
Vol 27 (4) ◽  
pp. 1445-1468 ◽  
Author(s):  
Cecilia Peralta-Ferriz ◽  
James H. Morison ◽  
John M. Wallace ◽  
Jennifer A. Bonin ◽  
Jinlun Zhang

Abstract Measurements of ocean bottom pressure (OBP) anomalies from the satellite mission Gravity Recovery and Climate Experiment (GRACE), complemented by information from two ocean models, are used to investigate the variations and distribution of the Arctic Ocean mass from 2002 through 2011. The forcing and dynamics associated with the observed OBP changes are explored. Major findings are the identification of three primary temporal–spatial modes of OBP variability at monthly-to-interannual time scales with the following characteristics. Mode 1 (50% of the variance) is a wintertime basin-coherent Arctic mass change forced by southerly winds through Fram Strait, and to a lesser extent through Bering Strait. These winds generate northward geostrophic current anomalies that increase the mass in the Arctic Ocean. Mode 2 (20%) reveals a mass change along the Siberian shelves, driven by surface Ekman transport and associated with the Arctic Oscillation. Mode 3 (10%) reveals a mass dipole, with mass decreasing in the Chukchi, East Siberian, and Laptev Seas, and mass increasing in the Barents and Kara Seas. During the summer, the mass decrease on the East Siberian shelves is due to the basin-scale anticyclonic atmospheric circulation that removes mass from the shelves via Ekman transport. During the winter, the forcing mechanisms include a large-scale cyclonic atmospheric circulation in the eastern-central Arctic that produces mass divergence into the Canada Basin and the Barents Sea. In addition, strengthening of the Beaufort high tends to remove mass from the East Siberian and Chukchi Seas. Supporting previous modeling results, the month-to-month variability in OBP associated with each mode is predominantly of barotropic character.


Sign in / Sign up

Export Citation Format

Share Document