Thermal resistance contributions of oxides growth on Incoloy 800 steam generator tubes

2003 ◽  
Vol 219 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A.M Iglesias ◽  
M.A.del C Raffo Calderon
Author(s):  
Sandra Pagan ◽  
Xinjian Duan ◽  
Michael J. Kozluk ◽  
Brian Mills ◽  
Guylaine Goszczynski

Canadian nuclear standard CSA N285.4 requires the periodic metallurgical examination of removed ex-service steam generator tubes. This paper describes the practices used for the characterization and structural integrity tests of ex-service steam generator tubes at Ontario Power Generation (OPG). It shows that there is no degradation in mechanical properties of Monel 400 tubes after 7 to 18 Effective Full Power Years (EFPY) of operation and Incoloy 800 tubes after more than 10 EFPY of operation.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Dumitra Lucan ◽  
Manuela Fulger ◽  
Gheorghita Jinescu

The Steam Generators (SG), equipment that ensures the connection between the primary and secondary circuits, creates several safety problems during operation, mainly due to corrosion and mechanical damages. To provide information about the corrosion behaviour of the structural materials from CANDU SG under normal and abnormal conditions of operation and to identify the failure types produced by the corrosion were performed corrosion experiments consisting in chemical accelerated tests, static autoclaving and electrochemical methods. The gravimetric method, optical metallographic microscopy, XRD and EDS analysis, as well as electrochemical measurements have been used to evaluate the corrosion behavior of the steam generator tubes material (Incoloy-800).


Author(s):  
Mitch Hokazono ◽  
Clayton T. Smith

Integral light-water reactor designs propose the use of steam generators located within the reactor vessel. Steam generator tubes in these designs must withstand external pressure loadings to prevent buckling, which is affected by material strength, fabrication techniques, chemical environment and tube geometry. Experience with fired tube boilers has shown that buckling in boiler tubes is greatly alleviated by controlling ovality in bends when the tubes are fabricated. Light water reactor steam generator pressures will not cause a buckling problem in steam generators with reasonable fabrication limits on tube ovality and wall thinning. Utilizing existing Code rules, there is a significant design margin, even for the maximum differential pressure case. With reasonable bend design and fabrication limits the helical steam generator thermodynamic advantages can be realized without a buckling concern. This paper describes a theoretical methodology for determining allowable external pressure for steam generator tubes subject to tube ovality based on ASME Section III Code Case N-759-2 rules. A parametric study of the results of this methodology applied to an elliptical cross section with varying wall thicknesses, tube diameters, and ovality values is also presented.


2006 ◽  
Vol 321-323 ◽  
pp. 451-454
Author(s):  
Joo Young Yoo ◽  
Sung Jin Song ◽  
Chang Hwan Kim ◽  
Hee Jun Jung ◽  
Young Hwan Choi ◽  
...  

In the present study, the synthetic signals from the combo tube are simulated by using commercial electromagnetic numerical analysis software which has been developed based on a volume integral method. A comparison of the simulated signals to the experiments is made for the verification of accuracy, and then evaluation of five deliberated single circumferential indication signals is performed to explore a possibility of using a numerical simulation as a practical calibration tool. The good agreement between the evaluation results for two cases (calibration done by experiments and calibration made by simulation) demonstrates such a high possibility.


Author(s):  
Jongmin Kim ◽  
Min-Chul Kim ◽  
Joonyeop Kwon

Abstract The materials used previously for steam generator tubes around the world have been replaced and will be replaced by Alloy 690 given its improved corrosion resistance relative to that of Alloy 600. However, studies of the high- temperature creep and creep-rupture characteristics of steam generator tubes made of Alloy 690 are insufficient compared to those focusing on Alloy 600. In this study, several creep tests were conducted using half tube shape specimens of the Alloy 690 material at temperatures ranging from 650 to 850C and stresses in the range of 30 to 350 MPa, with failure times to creep rupture ranging from 3 to 870 hours. Based on the creep test results, creep life predictions were then made using the well-known Larson Miller Parameter method. Steam generator tube rupture tests were also conducted under the conditions of a constant temperature and pressure ramp using steam generator tube specimens. The rupture test equipment was designed and manufactured to simulate the transient state (rapid temperature and pressure changes) in the event of a severe accident condition. After the rupture test, the damage to the steam generator tubes was predicted using a creep rupture model and a flow stress model. A modified creep rupture model for Alloy 690 steam generator tube material is proposed based on the experimental results. A correction factor of 1.7 in the modified creep rupture model was derived for the Alloy 690 material. The predicted failure pressure was in good agreement with the experimental failure pressure.


Sign in / Sign up

Export Citation Format

Share Document