Probing the interface behaviour of injection molded thermoplastics by micro-thermal analysis and temperature-modulated differential scanning calorimetry

Polymer ◽  
2003 ◽  
Vol 44 (13) ◽  
pp. 3661-3670 ◽  
Author(s):  
S.A Edwards ◽  
M Provatas ◽  
M Ginic-Markovic ◽  
N.Roy Choudhury
2020 ◽  
Vol 10 (24) ◽  
pp. 8790
Author(s):  
Agata Górska ◽  
Rita Brzezińska ◽  
Magdalena Wirkowska-Wojdyła ◽  
Joanna Bryś ◽  
Ewa Domian ◽  
...  

The aim of the study was to characterize the thermal properties of coffee silverskin and fat extracted from the material by using differential scanning calorimetry, modulated differential scanning calorimetry and thermogravimetry/derivative thermogravimetry. Additionally, the thermokinetic parameters, oxidative stability and fatty acid composition of the extracted oil were defined. Thermal decomposition of the studied coffee roasting by-product under oxygen occurred in three defined stages. The most significant changes in weight were observed in the region of 200–500 °C and correspond to polysaccharide decomposition. These results are in agreement with the data obtained from the differential scanning calorimetry curve. On the curve course of silverskin, two main exothermic peaks can be observed with a maximum at 265 and 340 °C. These exothermic events represent the transitions of hemicellulose and cellulose. Fat extracted from silverskin turned out to be a source of polyunsaturated fatty acids with the recommended n-6 to n-3 ratio reaching the value 4:1. The studied fat was characterized by low oxidative stability. Considering the obtained results, it can be stated that thermal analysis can provide fast and reliable data concerning the composition and properties of coffee silverskin and coffee silverskin oil.


1997 ◽  
Vol 12 (7) ◽  
pp. 1892-1899 ◽  
Author(s):  
T. Wagner ◽  
S. O. Kasap ◽  
Kouji Maeda

The recent novel temperature-modulated differential scanning calorimetry (DSC) (MDSCTM TA Instruments) technique has been applied to characterize the thermal properties of Ge–Se chalcogenide glasses in the glass transition region. All samples in this work were given the same thermal history by heating to a temperature above the glass transition, equilibrating, and then cooling at a rate of 5 °C/min to a temperature of 20 °C. The reversing and nonreversing heat flows through the glass transformation region during both heating and cooling schedules were measured, and the values of the parameters Tg, ΔH, Cp, and ΔCp, which characterize the thermal events in the glass transition region, were determined. The ability of determining the reversible heat flow in MDSC enables an accurate measurement of the true heat capacity (that normally associated with reversible heat flow), which could not be done hitherto in conventional thermal analysis where the detected heat flow is the total heat flow, the sum of reversing and nonreversing heat flows. The structurally controlled parameters Tg, ΔH, Cp, and ΔCp reveal extrema when the Ge–Se glass system reaches the average coordination number 〈r〉 = 2.67 at 33.3 at.% Ge which corresponds to the stoichiometric composition GeSe2. We also observed extrema in the composition dependence of the above thermal parameters at 20.0 and 40.0 at.% Ge which correspond to stoichiometric compositions GeSe4 and Ge2Se3 with average coordination numbers 2.40 and 2.80, respectively. No such clear local maxima below and above the 33.3 at.% Ge composition could be observed previously in thermal analysis. We compare our MDSC results with previously published works on glass transition in Ge–Se glasses and discuss the results in terms of recent structural models for chalcogenide glasses.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Author(s):  
Kinga Tamási ◽  
Kálmán Marossy

AbstractThe paper deals with the study of seven selected natural plant oils. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermally stimulated discharge (TSD) methods were used. It has been found that most of the oils tested are in a glassy state at low temperature and have multiple transitions in the low temperature range. DSC shows complex melting-like processes or glass transition. For both DMA and TSD, the scaffold supportive method was used and found as a suitable one. DMA and TSD proved more sensitive than DSC and revealed at least two transitions between − 120 and − 40 °C. In the case of three oils (argan, avocado and sunflower), current reversal was observed by TSD; this symptom cannot be fully explained at the moment.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 270
Author(s):  
Evgeniy V. Belukhichev ◽  
Vera E. Sitnikova ◽  
Evgenia O. Samuylova ◽  
Mayya V. Uspenskaya ◽  
Daria M. Martynova

Polymeric packaging materials are one of the factors of environmental pollution. Reducing the environmental burden is possible by increasing the environmental friendliness of packaging materials. In this work, we study polymer films based on polyvinyl chloride (PVC) with a copolymer of 3-hydroxybutyrate with 3-hydroxyhexanoate P (3-GB) (3-GG) with different component ratios. The process of processing blends in the process of obtaining a packaging film is considered. The optical characteristics of the obtained films are determined. Thermal analysis of the obtained films was carried out using the differential scanning calorimetry (DSC), TGA, and thermomechanical analysis (TMA) methods. The degree of gelling of the resulting mixture was determined. It is shown that PHB has miscibility with PVC.


Sign in / Sign up

Export Citation Format

Share Document