Effects of ion beam bombardment on electrochromic tungsten oxide films studied by X-ray photoelectron spectroscopy and Rutherford back-scattering

2000 ◽  
Vol 376 (1-2) ◽  
pp. 131-139 ◽  
Author(s):  
H.Y. Wong ◽  
C.W. Ong ◽  
R.W.M. Kwok ◽  
K.W. Wong ◽  
S.P. Wong ◽  
...  
2021 ◽  
Author(s):  
Ghada El Jamal ◽  
Thomas Gouder ◽  
Rachel Eloirdi ◽  
Evgenia Tereshina-Chitrova ◽  
Lukáš Horák ◽  
...  

X-Ray Photoelectron Spectroscopy (XPS) has been used to study the effect of mixed H2O/H2 gas plasma on the surface of UO2, U2O5 and UO3 thin films at 400 °C. The...


1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


1999 ◽  
Vol 604 ◽  
Author(s):  
Keiichi Kuboyama ◽  
Kazumi Matsushige

AbstractSome transition metal oxides are known to exhibit the reversible coloration phenomena. Tungsten oxide is one of such materials and exhibits the photochromism and the electrochromism. It is known that the coloration phenomena in the tungsten oxide hydrate are caused by the redox reaction. We found that the photochromic efficiency became extremely higher by addition of some organic materials to the tungsten oxide hydrate and we have studied the mechanism of such a remarkable photochromic enhancement. In some spectroscopic measurement as FT-IR (Fourier transform infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy), we obtained interesting features as follows. The addition of an organic material leads to reducing the tungsten oxide hydrate to smaller pieces, that is, the surface area of the pieces that can react with the additive increases. Moreover, it was found that specific sites in the additive are oxidized when the sample colors. The fact suggests that the additives having such specific sites can enhance the photochromism of the tungsten oxide hydrate


Sign in / Sign up

Export Citation Format

Share Document