Chapter 1 The Lattice Structure of Riesz Spaces

1978 ◽  
pp. 1-32
Author(s):  
O. Zabeti

Suppose X is a topological ring. It is known that there are three classes of bounded group homomorphisms on X whose topological structures make them again topological rings. First, we show that if X is a Hausdorff topological ring, then so are these classes of bounded group homomorphisms on X. Now, assume that X is a locally solid lattice ring. In this paper, our aim is to consider lattice structure on these classes of bounded group homomorphisms more precisely, we show that, under some mild assumptions, they are locally solid lattice rings. In fact, we consider bounded order bounded homomorphisms on X. Then we show that under the assumed topology, they form locally solid lattice rings. For this reason, we need a version of the remarkable RieszKantorovich formulae for order bounded operators in Riesz spaces in terms of order bounded homomorphisms on topological lattice groups.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Author(s):  
David C. Joy

In a crystalline solid the regular arrangement of the lattice structure influences the interaction of the incident beam with the specimen, leading to changes in both the transmitted and backscattered signals when the angle of incidence of the beam to the specimen is changed. For the simplest case the electron flux inside the specimen can be visualized as the sum of two, standing wave distributions of electrons (Fig. 1). Bloch wave 1 is concentrated mainly between the atom rows and so only interacts weakly with them. It is therefore transmitted well and backscattered weakly. Bloch wave 2 is concentrated on the line of atom centers and is therefore transmitted poorly and backscattered strongly. The ratio of the excitation of wave 1 to wave 2 varies with the angle between the incident beam and the crystal structure.


Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


Author(s):  
L. Fei

Scanned probe microscopes (SPM) have been widely used for studying the structure of a variety material surfaces and thin films. Interpretation of SPM images, however, remains a debatable subject at best. Unlike electron microscopes (EMs) where diffraction patterns and images regularly provide data on lattice spacings and angles within 1-2% and ∽1° accuracy, our experience indicates that lattice distances and angles in raw SPM images can be off by as much as 10% and ∽6°, respectively. Because SPM images can be affected by processes like the coupling between fast and slow scan direction, hysteresis of piezoelectric scanner, thermal drift, anisotropic tip and sample interaction, etc., the causes for such a large discrepancy maybe complex even though manufacturers suggest that the correction can be done through only instrument calibration.We show here that scanning repulsive force microscope (SFM or AFM) images of freshly cleaved mica, a substrate material used for thin film studies as well as for SFM instrument calibration, are distorted compared with the lattice structure expected for mica.


2000 ◽  
Vol 5 (5) ◽  
pp. 4-5

Abstract Spinal cord (dorsal column) stimulation (SCS) and intraspinal opioids (ISO) are treatments for patients in whom abnormal illness behavior is absent but who have an objective basis for severe, persistent pain that has not been adequately relieved by other interventions. Usually, physicians prescribe these treatments in cancer pain or noncancer-related neuropathic pain settings. A survey of academic centers showed that 87% of responding centers use SCS and 84% use ISO. These treatments are performed frequently in nonacademic settings, so evaluators likely will encounter patients who were treated with SCS and ISO. Does SCS or ISO change the impairment associated with the underlying conditions for which these treatments are performed? Although the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) does not specifically address this question, the answer follows directly from the principles on which the AMA Guides impairment rating methodology is based. Specifically, “the impairment percents shown in the chapters that consider the various organ systems make allowance for the pain that may accompany the impairing condition.” Thus, impairment is neither increased due to persistent pain nor is it decreased in the absence of pain. In summary, in the absence of complications, the evaluator should rate the underlying pathology or injury without making an adjustment in the impairment for SCS or ISO.


2000 ◽  
Vol 5 (6) ◽  
pp. 1-7
Author(s):  
Christopher R. Brigham ◽  
James B. Talmage ◽  
Leon H. Ensalada

Abstract The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, is available and includes numerous changes that will affect both evaluators who and systems that use the AMA Guides. The Fifth Edition is nearly twice the size of its predecessor (613 pages vs 339 pages) and contains three additional chapters (the musculoskeletal system now is split into three chapters and the cardiovascular system into two). Table 1 shows how chapters in the Fifth Edition were reorganized from the Fourth Edition. In addition, each of the chapters is presented in a consistent format, as shown in Table 2. This article and subsequent issues of The Guides Newsletter will examine these changes, and the present discussion focuses on major revisions, particularly those in the first two chapters. (See Table 3 for a summary of the revisions to the musculoskeletal and pain chapters.) Chapter 1, Philosophy, Purpose, and Appropriate Use of the AMA Guides, emphasizes objective assessment necessitating a medical evaluation. Most impairment percentages in the Fifth Edition are unchanged from the Fourth because the majority of ratings currently are accepted, there is limited scientific data to support changes, and ratings should not be changed arbitrarily. Chapter 2, Practical Application of the AMA Guides, describes how to use the AMA Guides for consistent and reliable acquisition, analysis, communication, and utilization of medical information through a single set of standards.


Sign in / Sign up

Export Citation Format

Share Document