Fluorescent Proteins in Zebrafish Cell and Developmental Biology

Author(s):  
H. William Detrich
Open Biology ◽  
2014 ◽  
Vol 4 (4) ◽  
pp. 140002 ◽  
Author(s):  
Michael Knop ◽  
Bruce A. Edgar

Expanded fluorescent protein techniques employing photo-switchable and fluorescent timer proteins have become important tools in biological research. These tools allow researchers to address a major challenge in cell and developmental biology, namely obtaining kinetic information about the processes that determine the distribution and abundance of proteins in cells and tissues. This knowledge is often essential for the comprehensive understanding of a biological process, and/or required to determine the precise point of interference following an experimental perturbation.


Author(s):  
Mircea Fotino

A new 1-MeV transmission electron microscope (Model JEM-1000) was installed at the Department of Molecular, Cellular and Developmental Biology of the University of Colorado in Boulder during the summer and fall of 1972 under the sponsorship of the Division of Research Resources of the National Institutes of Health. The installation was completed in October, 1972. It is installed primarily for the study of biological materials without many of the limitations hitherto unavoidable in standard transmission electron microscopy. Only the technical characteristics of the installation are briefly reviewed here. A more detailed discussion of the experimental program under way is being published elsewhere.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2006 ◽  
Vol 175 (4S) ◽  
pp. 328-328 ◽  
Author(s):  
Hugo H. Davila ◽  
Maggie Mamcarz ◽  
Irving Nadelhaft ◽  
Raoul Salup ◽  
Jorge Lockhart ◽  
...  

2009 ◽  
Vol 138 (3) ◽  
pp. 421-422
Author(s):  
Antónia Monteiro

1997 ◽  
Vol 24 (1) ◽  
pp. 19-36 ◽  
Author(s):  
DALE R. CALDER ◽  
LESTER D. STEPHENS

Samuel Fessenden Clarke was the leading specialist on hydroids (phylum Cnidaria) in North America over the last quarter of the nineteenth century. During that period he published taxonomic papers on hydroids from both the Atlantic and Pacific coasts of the continent, from the Gulf of Mexico, and from the eastern Pacific off Central and South America. He also authored a section on hydrozoan biology for “The Riverside Natural History” series. Most of his papers on hydroids were published while he was in his twenties. Clarke described as new 61 nominal species, three nominal genera, and one nominal family, as well as two “varieties” of hydroids. A list of these, and their current taxonomic status, appears in the present work. Clarke consistently provided sound descriptions and locality data for all supposed new species, and drew accurate illustrations of most of them. His research on Hydrozoa, beyond alphataxonomy, was directed towards faunal distributions and the use of hydroid assemblages as biogeographic indicators. In addition to investigations on hydroids, Clarke carried out research on the developmental biology of amphibians and reptiles. His doctoral dissertation at Johns Hopkins University was based on the embryology of the “Spotted Salamander” (=Yellow-spotted Salamander), and he published a major paper on the habits and embryology of the American Alligator. Most of Clarke's career was devoted to academic duties at Williams College, Massachusetts, where he was recognized as a dedicated and inspiring teacher. He served the American Society of Naturalists in various capacities, including a term as its president, was an influential trustee of the Marine Biological Laboratory, Woods Hole, and promoted the study of science in American schools.


2003 ◽  
Vol 773 ◽  
Author(s):  
Xiaohu Gao ◽  
Shuming Nie ◽  
Wallace H. Coulter

AbstractLuminescent quantum dots (QDs) are emerging as a new class of biological labels with unique properties and applications that are not available from traditional organic dyes and fluorescent proteins. Here we report new developments in using semiconductor quantum dots for quantitative imaging and spectroscopy of single cancer cells. We show that both live and fixed cells can be labeled with multicolor QDs, and that single cells can be analyzed by fluorescence imaging and wavelength-resolved spectroscopy. These results raise new possibilities in cancer imaging, molecular profiling, and disease staging.


2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document