A kinetic model of rat proximal tubule transport—Load-dependent bicarbonate reabsorption along the tubule

1994 ◽  
Vol 56 (3) ◽  
pp. 431-458
Author(s):  
S THOMAS ◽  
G DAGHER
2004 ◽  
Vol 287 (4) ◽  
pp. F789-F796 ◽  
Author(s):  
Matthew A. Bailey

The present study used a stationary microperfusion technique to investigate in vivo the effect of P2Y1 receptor activation on bicarbonate reabsorption in the rat proximal tubule. Proximal tubules were perfused with a bicarbonate Ringer solution before flow was stopped by means of an oil block. The recovery of lumen pH from the initial value (pH 8.0) to stationary values (pH ∼6.7) was recorded by a H+-sensitive microelectrode inserted downstream of the perfusion pipette and oil block. The stationary pH value and the t of pH recovery were used to calculate bicarbonate reabsorption ( JHCO3). Both EIPA and bafilomycin A1 caused significant reductions in proximal tubule JHCO3, consistent with the established contributions of Na/H exchange and H+-ATPase to proximal tubule HCO3 reabsorption. The nucleotides ADP and, to a lesser extent, ATP reduced JHCO3 but AMP and UTP were without effect. 2MeSADP, a highly selective agonist of the P2Y1 receptor, reduced JHCO3 in a dose-dependent manner. MRS-2179, a P2Y1 receptor-specific antagonist, abolished the effect of 2MeSADP, whereas theophylline, an antagonist of adenosine (P1) receptors, did not. The inhibitory action of 2MeSADP was blocked by inhibition of protein kinase C and reduced by inhibition of protein kinase A. The effects of EIPA and 2MeSADP were not additive. The data provide functional evidence for P2Y1 receptors in the apical membrane of the rat proximal tubule: receptor activation impairs acidification in this nephron segment.


1995 ◽  
Vol 105 (5) ◽  
pp. 617-641 ◽  
Author(s):  
A M Weinstein

The luminal membrane antiporter of the proximal tubule has been represented using the kinetic formulation of E. Heinz (1978. Mechanics and Engergetics of Biological Transport. Springer-Verlag, Berlin) with the assumption of equilibrium binding and 1:1 stoichiometry. Competitive binding and transport of NH+4 is included within this model. Ion affinities and permeation velocities were selected in a least-squares fit to the kinetic parameters determined experimentally in renal membrane vesicles (Aronson, P.S., M.A. Suhm, and J. Nee. 1983. Journal of Biological Chemistry. 258:6767-6771). The modifier role of internal H+ to enhance transport beyond the expected kinetics (Aronson, P.S., J. Nee, and M. A. Suhm. 1982. Nature. 299:161-163) is represented as a velocity effect of H+ binding to a single site. This kinetic formulation of the Na+/H+ antiporter was incorporated within a model of the rat proximal tubule (Weinstein, A. M. 1994. American Journal of Physiology. 267:F237-F248) as a replacement for the representation by linear nonequilibrium thermodynamics (NET). The membrane density of the antiporter was selected to yield agreement with the rate of tubular Na+ reabsorption. Simulation of 0.5 cm of tubule predicts that the activity of the Na+/H+ antiporter is the most important force for active secretion of ammonia. Model calculations of metabolic acid-base disturbances are performed and comparison is made among antiporter representations (kinetic model, kinetic model without internal modifier, and NET formulation). It is found that the ability to sharply turn off Na+/H+ exchange in cellular alkalosis substantially eliminates the cell volume increase associated with high HCO3- conditions. In the tubule model, diminished Na+/H+ exchange in alkalosis blunts the axial decrease in luminal HCO3- and thus diminishes paracellular reabsorption of Cl-. In this way, the kinetics of the Na+/H+ antiporter could act to enhance distal delivery of Na+, Cl-, and HCO3- in acute metabolic alkalosis.


1989 ◽  
Vol 256 (6) ◽  
pp. F1104-F1110 ◽  
Author(s):  
E. E. Simon ◽  
C. Merli ◽  
J. Herndon ◽  
E. J. Cragoe ◽  
L. L. Hamm

The technique of in vivo microperfusion was used to examine the determinants of ammonia entry along the rat proximal tubule under conditions of chronic metabolic acidosis (CMA). When perfused with a 5 mM bicarbonate-containing perfusate, collected fluid ammonia concentrations remained constant with increasing flow rate and thus ammonia entry was highly flow-rate dependent. Ammonia entry was also flow-rate dependent using a 25 mM bicarbonate perfusate but entry reached a plateau as perfusion rate increased. Also, ammonia entry tended to be lower at all perfusion rates with the 25 mM perfusate compared with the 5 mM bicarbonate perfusate, but this was most evident at the highest perfusion rate (45 nl/min). The decline in ammonia entry was associated with increasing collected fluid bicarbonate concentrations, suggesting that there was inhibition of diffusion trapping of ammonia. The effects of Na+-H+ exchange inhibition on ammonia entry were examined using the amiloride analogue, 5-(N-ethyl-N-isopropyl)amiloride. With a 25 mM bicarbonate-containing perfusate, the amiloride analogue caused a significant decrease in bicarbonate reabsorption but a nonsignificant decrease in ammonia entry associated with a significant rise in collected fluid bicarbonate concentration. When the potential effects of decreased diffusion trapping of ammonia were eliminated with 12 and 5 mM bicarbonate-containing perfusates, the analogue had no effect on ammonia entry despite significant inhibition of bicarbonate reabsorption. Thus ammonia entry in CMA is moderately affected by tubule fluid pH but is highly flow-rate dependent. There were no effects of inhibition of Na+-H+ exchange above those expected from inhibition of diffusion trapping of ammonia.


1982 ◽  
Vol 242 (6) ◽  
pp. F604-F609
Author(s):  
Y. L. Chan ◽  
N. A. Kurtzman

The effects of lysine on bicarbonate and fluid reabsorption in the rat proximal tubule were studied by luminal and capillary perfusion in situ. The proximal tubule and peritubular capillaries were perfused with bicarbonate Ringer solution containing [14C]inulin. The rate of bicarbonate reabsorption (JHCO3) was estimated to be 124 +/- 9.5 peq.min-1.mm-1 using a pH membrane glass electrode. The rate of net fluid reabsorption (Jv) was 2.6 +/- 0.21 nl.min-1.mm-1. When 10 mM L-lysine was added to the luminal perfusate, a 35% reduction in JHCO3 and no change in Jv were observed. Increase of L-lysine concentration in the luminal perfusate to 20 mM did not reduce JHCO3 further nor did it influence Jv.l When 10 mM L-lysine was added to the capillary perfusate, a 13% reduction in JHCO3 was observed (NS). Increase of lysine concentration in the capillary perfusate to 20 mM significantly reduced JHCO3 by 26% (P less than 0.01). There was no significant change in Jv under both conditions. The effect of L-lysine in the lumen was related to its reabsorption kinetics, D-Lysine, which was not reabsorbed significantly, did not affect bicarbonate reabsorption in the proximal tubule. These results indicate that the inhibitory effect of L-lysine is related to the entry of lysine into the cell from the lumen.


1985 ◽  
Vol 249 (6) ◽  
pp. F789-F798 ◽  
Author(s):  
A. M. Kahn ◽  
E. J. Weinman

The transport of urate in the mammalian nephron is largely confined to the proximal tubule. Depending on the species, net reabsorption or net secretion is observed. The rat, like the human and the mongrel dog, demonstrates net reabsorption of urate and has been the most extensively studied species. The unidirectional reabsorption and secretion of urate in the rat proximal tubule occur via a passive and presumably paracellular route and by a mediated transcellular route. The reabsorption of urate, and possibly its secretion, can occur against an electrochemical gradient. A variety of drugs and other compounds affect the reabsorption and secretion of urate. The effects of these agents depend on their site of application (luminal or blood), concentration, and occasionally their participation in transport processes that do not have affinity for urate. Recent studies with renal brush border and basolateral membrane vesicles from the rat and brush border vesicles from the dog have determined the mechanisms for urate transport across the luminal and antiluminal membranes of the proximal tubule cell. Brush border membrane vesicles contain an anion exchanger with affinity for urate, hydroxyl ion, bicarbonate, chloride, lactate, p-aminohippurate (PAH), and a variety of other organic anions. Basolateral membrane vesicles contain an anion exchanger with affinity for urate and chloride but not for PAH. Both membrane vesicle preparations also permit urate translocation by simple diffusion. A model for the transcellular reabsorption and secretion of urate in the rat proximal tubule is proposed. This model is based on the vesicle studies, and it can potentially explain the majority of urate transport data obtained with in vivo techniques.


2009 ◽  
Vol 296 (5) ◽  
pp. F1185-F1193 ◽  
Author(s):  
Patricia Silva Pergher ◽  
Deise Leite-Dellova ◽  
Margarida de Mello-Aires

The direct action of aldosterone (10−12 M) on net bicarbonate reabsorption ( JHCO3−) was evaluated by stationary microperfusion of an in vivo middle proximal tubule (S2) of rat kidney, using H ion-sensitive microelectrodes. Aldosterone in luminally perfused tubules caused a significant increase in JHCO3− from a mean control value of 2.84 ± 0.08 [49/19 ( n° of measurements/ n° of tubules)] to 4.20 ± 0.15 nmol·cm−2·s−1 (58/10). Aldosterone perfused into peritubular capillaries also increased JHCO3−, compared with basal levels during intact capillary perfusion with blood. In addition, in isolated perfused tubules aldosterone causes a transient increase of cytosolic free calcium ([Ca2+]i), monitored fluorometrically. In the presence of ethanol (in similar concentration used to prepare the hormonal solution), spironolactone (10−6 M, a mineralocorticoid receptor antagonist), actinomycin D (10−6 M, an inhibitor of gene transcription), or cycloheximide (40 mM, an inhibitor of protein synthesis), the JHCO3− and the [Ca2+]i were not different from the control value; these drugs also did not prevent the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. However, in the presence of RU 486 alone [10−6 M, a classic glucocorticoid receptor (GR) antagonist], a significant decrease on JHCO3− and on [Ca2+]i was observed; this antagonist also inhibited the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. These studies indicate that luminal or peritubular aldosterone (10−12 M) has a direct nongenomic stimulatory effect on JHCO3− and on [Ca2+]i in proximal tubule and that probably GR participates in this process. The data also indicate that endogenous aldosterone stimulates JHCO3− in middle proximal tubule.


Sign in / Sign up

Export Citation Format

Share Document