Direct action of aldosterone on bicarbonate reabsorption in in vivo cortical proximal tubule

2009 ◽  
Vol 296 (5) ◽  
pp. F1185-F1193 ◽  
Author(s):  
Patricia Silva Pergher ◽  
Deise Leite-Dellova ◽  
Margarida de Mello-Aires

The direct action of aldosterone (10−12 M) on net bicarbonate reabsorption ( JHCO3−) was evaluated by stationary microperfusion of an in vivo middle proximal tubule (S2) of rat kidney, using H ion-sensitive microelectrodes. Aldosterone in luminally perfused tubules caused a significant increase in JHCO3− from a mean control value of 2.84 ± 0.08 [49/19 ( n° of measurements/ n° of tubules)] to 4.20 ± 0.15 nmol·cm−2·s−1 (58/10). Aldosterone perfused into peritubular capillaries also increased JHCO3−, compared with basal levels during intact capillary perfusion with blood. In addition, in isolated perfused tubules aldosterone causes a transient increase of cytosolic free calcium ([Ca2+]i), monitored fluorometrically. In the presence of ethanol (in similar concentration used to prepare the hormonal solution), spironolactone (10−6 M, a mineralocorticoid receptor antagonist), actinomycin D (10−6 M, an inhibitor of gene transcription), or cycloheximide (40 mM, an inhibitor of protein synthesis), the JHCO3− and the [Ca2+]i were not different from the control value; these drugs also did not prevent the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. However, in the presence of RU 486 alone [10−6 M, a classic glucocorticoid receptor (GR) antagonist], a significant decrease on JHCO3− and on [Ca2+]i was observed; this antagonist also inhibited the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. These studies indicate that luminal or peritubular aldosterone (10−12 M) has a direct nongenomic stimulatory effect on JHCO3− and on [Ca2+]i in proximal tubule and that probably GR participates in this process. The data also indicate that endogenous aldosterone stimulates JHCO3− in middle proximal tubule.

2002 ◽  
Vol 282 (2) ◽  
pp. F256-F264 ◽  
Author(s):  
Raif Musa-Aziz ◽  
Maria Luisa Morais Barreto-Chaves ◽  
Margarida De Mello-Aires

10.1152/ajprenal.00056.2001. Peritubular arginine vasopressin (AVP) regulates bicarbonate reabsorption in the cortical distal tubule via V1 and V2 receptors. The dose-dependent effects of peritubular AVP on net bicarbonate reabsorption ( J HCO[Formula: see text] ) were evaluated by stationary microperfusion of in vivo early (ED; distal convoluted tubule) and late distal (LD; connecting tubule and initial collecting duct) segments of rat kidney, using double-barreled H+-sensitive, ion-exchange resin/reference (1 M KCl) microelectrodes. AVP (10−11 M) perfused into peritubular capillaries increased J HCO[Formula: see text] , compared with basal levels during intact capillary perfusion with blood, in ED and LD segments. AVP (10−9 M) also increased J HCO[Formula: see text] in both segments, but the effect of AVP (10−11 M) was significantly higher. A specificV1-receptor antagonist alone or with AVP (10−11 or 10−9 M) reduced J HCO[Formula: see text] below basal levels. A specific V2-receptor antagonist alone or plus AVP (10−11 M) did not affect J HCO[Formula: see text] but increased AVP (10−9 M)-mediated stimulation. 8-Bromoadenosine 3′,5′-cyclic monophosphate alone reduced J HCO[Formula: see text] below basal levels and also reduced AVP (10−11 M)-mediated stimulation. (Deamino-Cys1, d-Arg8) vasopressin (a V2-selective agonist) also reduced J HCO[Formula: see text] below basal levels. These results show that peritubular AVP stimulates J HCO[Formula: see text] in ED and LD segments via basolateral V1 receptors and that basolateral V2 receptors have a dose-dependent inhibitory effect mediated by cAMP. The data also indicate that endogenous AVP stimulates distal J HCO[Formula: see text] via basolateral V1 receptors.


Author(s):  
J. M. Barrett ◽  
P. M. Heidger

Microbodies have received extensive morphological and cytochemical investigation since they were first described by Rhodin in 1954. To our knowledge, however, all investigations of microbodies and cytoplasmic bodies of rat renal proximal tubule cells have employed immersion fixation. Tisher, et al. have shown convincing evidence of fine structural alteration of microbodies in rhesus monkey kidney following immersion fixation; these alterations were not encountered when in vivo intravascular perfusion was employed. In view of these studies, and the fact that techniques for perfusion fixation have been established specifically for the rat kidney by Maunsbach, it seemed desirable to employ perfusion fixation to study the fine structure and distribution of microbodies and cytoplasmic bodies within the rat renal proximal tubule.


1986 ◽  
Vol 250 (4) ◽  
pp. F619-F626 ◽  
Author(s):  
R. Loutzenhiser ◽  
M. Epstein ◽  
C. Horton ◽  
P. Sonke

U-44069 is a stable prostaglandin (PG) H2 analogue and a potent vasoconstrictor. Its in vivo and in vitro actions mimic those of thromboxane A2. We have studied the effects of the calcium antagonist diltiazem upon the vasoconstriction induced by U-44069 using isolated rat aortic smooth muscle and isolated perfused rat kidney (IPRK). The administration of 10(-6)M U-44069 elicited maximally effective contractions in isolated aortic rings and increased 45Ca uptake from a control value of 285 +/- 6 mumol/kg to 344 +/- 8 mumol/kg. Diltiazem reduced U-44069-induced tension development and 45Ca uptake of isolated aortic smooth muscle 73 +/- 2 and 91 +/- 3%, respectively. The dose dependency of each of these effects of diltiazem was similar (EC50 = 369 nM and 334 nM for tension and 45Ca flux, respectively). When administered to the IPRK, 10(-6) M U-44069 caused a 82 +/- 3% decrease in glomerular filtration rate (GFR) and a 80 +/- 4% decrease in filtration fraction but reduced renal perfusate flow (RPF) only 13 +/- 8% (P less than 0.005). Diltiazem completely reversed the actions of U-44069 on the IPRK (EC50 = 288 nM and 323 nM for GFR and RPF, respectively). Diltiazem thus inhibited U-44069-induced tension development and 45Ca uptake by vascular smooth muscle and increased GFR within identical dose ranges. The contractile response of isolated rat glomeruli was also assessed. U-44069 reduced the volume of isolated glomeruli, but this action was neither prevented nor reversed by diltiazem. These results are consistent with the hypothesis that diltiazem increased GFR by inhibiting U-44069-induced Ca influx at preglomerular vessels.


1993 ◽  
Vol 264 (2) ◽  
pp. C302-C310 ◽  
Author(s):  
H. Birn ◽  
J. Selhub ◽  
E. I. Christensen

Folate-binding protein (FBP) is involved in folate reabsorption in the renal proximal tubule. Immunocytochemical studies have located FBP to the brush-border membrane, endocytic vacuoles, and dense apical tubules. We applied the same polyclonal antibody (anti-FBP) against FBP to investigate the dynamic relationship between FBP in the different compartments by microinjecting the antibody into rat kidney proximal tubules in situ. Specific binding of anti-FBP in vivo to the brush-border membrane was followed by fixation at various times. Protein A-gold labeling shows that anti-FBP is transported from endocytic invaginations into vacuoles followed by transport into dense apical tubules within 15 s. Thus FBP is rapidly internalized, and together with previous studies this study strongly suggests recycling of FBP back to the luminal plasma membrane through dense apical tubules. The results are consistent with reabsorption of folate through endocytosis of the FBP-folate complex followed by dissociation and recycling of FBP. When time is allowed there is a steady accumulation of FBP in dense apical tubules combined with an increase in surface density of the same compartment. A possible explanation involves partial inhibition of the fusion between dense apical tubules and plasma membrane because of the anti-FBP labeling of the receptor.


2004 ◽  
Vol 287 (4) ◽  
pp. F789-F796 ◽  
Author(s):  
Matthew A. Bailey

The present study used a stationary microperfusion technique to investigate in vivo the effect of P2Y1 receptor activation on bicarbonate reabsorption in the rat proximal tubule. Proximal tubules were perfused with a bicarbonate Ringer solution before flow was stopped by means of an oil block. The recovery of lumen pH from the initial value (pH 8.0) to stationary values (pH ∼6.7) was recorded by a H+-sensitive microelectrode inserted downstream of the perfusion pipette and oil block. The stationary pH value and the t of pH recovery were used to calculate bicarbonate reabsorption ( JHCO3). Both EIPA and bafilomycin A1 caused significant reductions in proximal tubule JHCO3, consistent with the established contributions of Na/H exchange and H+-ATPase to proximal tubule HCO3 reabsorption. The nucleotides ADP and, to a lesser extent, ATP reduced JHCO3 but AMP and UTP were without effect. 2MeSADP, a highly selective agonist of the P2Y1 receptor, reduced JHCO3 in a dose-dependent manner. MRS-2179, a P2Y1 receptor-specific antagonist, abolished the effect of 2MeSADP, whereas theophylline, an antagonist of adenosine (P1) receptors, did not. The inhibitory action of 2MeSADP was blocked by inhibition of protein kinase C and reduced by inhibition of protein kinase A. The effects of EIPA and 2MeSADP were not additive. The data provide functional evidence for P2Y1 receptors in the apical membrane of the rat proximal tubule: receptor activation impairs acidification in this nephron segment.


1996 ◽  
Vol 271 (2) ◽  
pp. F446-F450 ◽  
Author(s):  
T. Wang ◽  
A. L. Egbert ◽  
T. Abbiati ◽  
P. S. Aronson ◽  
G. Giebisch

We have previously demonstrated that formate and oxalate stimulate volume absorption in the rat proximal tubule, consistent with Cl-/formate and Cl-/oxalate exchange process across the apical membrane. To sustain Cl- absorption by these processes requires mechanisms for recycling formate and oxalate from lumen to cell. The aims of the present study were to characterize these mechanisms of formate and oxalate recycling. Proximal tubules and peritubular capillaries were simultaneously microperfused in the rat kidney in situ. Serum formate concentration was determined to be 56.5 +/- 7.7 microM. Addition of 5, 50, and 500 microM formate to both luminal and capillary perfusates significantly increased net Cl- absorption (Jcl) by 26, 26, and 46%, respectively. Jcl was stimulated 38% by 1 microM oxalate added to the perfusates. Removal of sulfate completely prevented the stimulation of Jcl by 1 microM oxalate but had no effect on the stimulation of Jcl by formate. Luminal addition of the Na+/H+ exchange inhibitor ethylisopropylamiloride completely blocked the stimulation of Jcl by 50 microM formate but had no effect on stimulation by oxalate. We conclude that physiological concentrations of formate and oxalate markedly stimulate Cl- and fluid absorption in the rat proximal convoluted tubule. Whereas formate recycling most likely involves Na+/H+ exchange in parallel with H(+)-coupled formate entry, oxalate recycling involves sodium-sulfate cotransport in parallel with sulfate/oxalate exchange.


2007 ◽  
Vol 293 (6) ◽  
pp. R2400-R2411 ◽  
Author(s):  
Alena Brandes ◽  
Oliver Oehlke ◽  
Anne Schümann ◽  
Stefanie Heidrich ◽  
Frank Thévenod ◽  
...  

The cellular distribution of the NH2-terminal electrogenic Na+-HCO3− cotransporter (NBCe1) variants NBCe1-A and NBCe1-B has been investigated in rat kidney and submandibular gland (SMG) under physiological conditions and after systemic acid-base perturbations. Moreover, the in vivo data were complemented in vitro by using an immortalized cell line derived from the S1 segment of the proximal tubule (PT) of normotensive Wistar-Kyoto rats (WKPT-0293 Cl.2). NBCe1-A was basolaterally localized in PT cells, whereas NBCe1-B exhibited intracellular and basolateral distribution. SMG showed transcript and protein expression for NBCe1-A and NBCe1-B. NBCe1-B was basolaterally localized in duct cells; NBCe1-A was found intracellularly in salivary striated ducts and apically in main duct cells. Acute metabolic acidosis significantly increased cells that showed basolateral NBCe1-A in the PT, indicating increased HCO3− reabsorption, and significantly decreased cells that exhibited basolateral NBCe1-B in the salivary ducts, suggesting decreased HCO3− secretion. Chronic acidosis had no effect on NBCe1 distribution in PT but significantly increased the percentage of cells with basolateral NBCe1-A in salivary striated duct cells, suggesting increased HCO3− reabsorption. In contrast, chronic alkalosis caused adaptive redistribution of NBCe1-A and NBCe1-B in renal PT, favoring decreased HCO3− reabsorption. In vitro, WKPT-0293 Cl.2 cells expressed key acid-base transporters. Extracellular alkalosis downregulated NBCe1-A protein. WKPT-0293 Cl.2 cells are therefore a useful model to study renal acid-base regulation in vitro. The results propose redistribution of the transporters as a potential posttranslational regulation modus during acid-base disturbances. Moreover, the data demonstrate that renal PT and salivary duct epithelia respond to acid-base disturbances by an opposite redistribution pattern for NBCe1-A and NBCe1-B, reflecting specialized functions as the HCO3−-reabsorbing and HCO3−-secreting epithelium, respectively.


1984 ◽  
Vol 247 (1) ◽  
pp. F151-F157 ◽  
Author(s):  
S. W. Weinstein ◽  
R. Klose ◽  
J. Szyjewicz

The majority of the oxygen consumed by the rat kidney appears to occur in the proximal tubule. Therefore changes in metabolically linked ion transport in this segment of the nephron should result in changes in renal oxygen consumption. To study the role of bicarbonate reabsorption in metabolically linked proximal tubular ion transport a series of micropuncture-clearance-extraction experiments were performed comparing the effects of the carbonic anhydrase inhibitor benzolamide and of hypertonic sodium bicarbonate infusion with control conditions in the rat. End-proximal tubular fluid and chloride reabsorption were measured. From these, the rates of sodium and bicarbonate reabsorption were estimated. Simultaneously with the tubular fluids, extraction collections were obtained for determination of renal oxygen consumption. Both benzolamide and hypertonic bicarbonate reduced proximal tubular fluid reabsorption while concomitantly reducing the transepithelial gradient for chloride. The mean rate of renal oxygen consumption did not differ from the control rate in either experimental group and could be dissociated from the calculated net rates of proximal tubular sodium, chloride, and bicarbonate reabsorption. We interpret these data as evidence that proximal tubular hydrogen ion secretion supporting bicarbonate reabsorption requires at most small amounts of oxidative energy, less than detectable by these techniques. The data, in contrast, support the conclusion that the chloride-bicarbonate transepithelial gradient appears to be an important passive driving force in vivo for proximal tubular fluid reabsorption.


1979 ◽  
Vol 236 (6) ◽  
pp. F526-F529 ◽  
Author(s):  
T. F. Knight ◽  
H. O. Senekjian ◽  
S. Sansom ◽  
E. J. Weinman

The in vivo microperfusion technique was employed to examine urate absorption in the proximal convoluted tubule of the rat kidney using [2–14C]urate as the marker for fractional urate absorption. With NaCl as the perfusion solution, water absorption averaged 2.53 +/- 0.16 nl.min-1.mm tubule-1, and the fractional absorption of [2–14C]urate averages 11.6 +/- 1.0%/mm tubule. The addition of D-glucose (50 mg/100 ml) enhanced water absorption to 3.62 +/- 0.19 nl.min-1.mm tubule-1, but inhibited fractional urate absorption to 6.6 +/- 1.2%/mm tubule. Phloridzin (4.4 mg/100 ml), 2-deoxy-D-glucose (45.6 mg/100 ml), and 3-O-methyl-D-glucose (53.9 mg/100 ml) also inhibited the absorption of [2–14C]urate to the same degree as did D-glucose despite differing effects on water absorption. The addition of probenecid (2.8 mg/100 ml) to the NaCl perfusion solution had no effect on water absorption but inhibited [2–14C]urate absorption to 6.4 +/- 0.6%/mm tubule. The addition of both probenecid and phloridzin further reduced [2–14C-A1urate absorption to 3.8 +/- 0.7%/mm tubule. Probenecid alone had no effect on glucose transport. These studies suggest that the presence of either certain hexose sugars, phloridzin, or probenecid in the lumen of the proximal convoluted tubule inhibits the tubular absorption of urate.


Sign in / Sign up

Export Citation Format

Share Document