An inducible mouse model for skin cancer reveals distinct roles for gain-and loss-of-function p53 mutations

2008 ◽  
Vol 2008 ◽  
pp. 309
Author(s):  
B.H. Thiers
2007 ◽  
Vol 117 (7) ◽  
pp. 1893-1901 ◽  
Author(s):  
Carlos Caulin ◽  
Thao Nguyen ◽  
Gene A. Lang ◽  
Thea M. Goepfert ◽  
Bill R. Brinkley ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 357
Author(s):  
Mojca Trstenjak Prebanda ◽  
Petra Matjan-Štefin ◽  
Boris Turk ◽  
Nataša Kopitar-Jerala

Stefin B (cystatin B) is an inhibitor of endo-lysosomal cysteine cathepsin, and the loss-of-function mutations in the stefin B gene were reported in patients with Unverricht–Lundborg disease (EPM1), a form of progressive myoclonus epilepsy. Stefin B-deficient mice, a mouse model of the disease, display key features of EPM1, including myoclonic seizures. Although the underlying mechanism is not yet completely clear, it was reported that the impaired redox homeostasis and inflammation in the brain contribute to the progression of the disease. In the present study, we investigated if lipopolysaccharide (LPS)-triggered neuroinflammation affected the protein levels of redox-sensitive proteins: thioredoxin (Trx1), thioredoxin reductase (TrxR), peroxiredoxins (Prxs) in brain and cerebella of stefin B-deficient mice. LPS challenge was found to result in a marked elevation of Trx1 and TrxR in the brain and cerebella of stefin B deficient mice, while Prx1 was upregulated only in cerebella after LPS challenge. Mitochondrial peroxiredoxin 3 (Prx3), was upregulated also in the cerebellar tissue lysates prepared from unchallenged stefin B deficient mice, while after LPS challenge Prx3 was upregulated in stefin B deficient brain and cerebella. Our results imply the role of oxidative stress in the progression of the disease.


FEBS Letters ◽  
2006 ◽  
Vol 580 (28-29) ◽  
pp. 6537-6542 ◽  
Author(s):  
Ron Mittler ◽  
YongSig Kim ◽  
Luhua Song ◽  
Jesse Coutu ◽  
Alicia Coutu ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii300-iii300
Author(s):  
Chen Shen ◽  
David Picketts ◽  
Oren Becher

Abstract Diffuse Intrinsic Potine Glioma (DIPG) is a rare pediatric brain tumor for which no cure or efficacious therapies exist. Previous discoveries have revealed that, DIPG harbors distinct genetic alterations, when compared with adult high-grade glioma (HGG) or even with non-DIPG pediatric HGGs. ATRX alteration is found in 9% of clinical cases of DIPG, and significantly overlaps with H3.3K27M mutation and p53 loss, the two most common genetic changes in DIPG, found in 80% and 77% clinical cases, respectively. Here we developed genetically engineered mouse model of brainstem glioma using the RCAS-Tv-a system by targeting PDGF-B overexpression, p53 loss, H3.3K27M mutation and ATRX loss-of function to Nestin-expression brainstem progenitor cells of the neonatal mouse. Specifically, we used Nestin-Tv-a; p53 floxed; ATRX heterozygous female and Nestin-Tv-a; p53 floxed; ATRX floxed male breeders, generated offsprings with ATRX loss of function (n=18), ATRX heterozygous females (n=6), and ATRX WT (n=10). Median survial of the three groups are 65 days, 88 days and 51 days, respectively. Also, ATRX null mice is lower in tumor incidence (44.4%), compared with ATRX WT (80%). We evaluated the pathological features of DIPG with or without ATRX alteration, RNA-seq is performed to identify differentially expressed genes between ATRX WT and loss-of-function. In conclution, this study generated the first genetically modified mouse model studying ATRX loss-of-function in DIPG, and suggested that ATRX loss-of-function in DIPG may slow down tumorigenesis and decrease tumor incidence.


2021 ◽  
Author(s):  
Matthias Pfeifer ◽  
Jonathan S. Brammeld ◽  
Stacey Price ◽  
Matthew Martin ◽  
Hannah Thorpe ◽  
...  

Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Xiang Fang ◽  
Yaser Gamallat ◽  
Zhiheng Chen ◽  
Hanran Mai ◽  
Pei Zhou ◽  
...  

ABSTRACT Loss-of-function mutations in multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes lead to decreased sperm motility and impaired male fertility. As an MMAF gene, the function of fibrous sheath-interacting protein 2 (FSIP2) remains largely unknown. In this work, we identified a homozygous truncating mutation of FSIP2 in an infertile patient. Accordingly, we constructed a knock-in (KI) mouse model with this mutation. In parallel, we established an Fsip2 overexpression (OE) mouse model. Remarkably, KI mice presented with the typical MMAF phenotype, whereas OE mice showed no gross anomaly except for sperm tails with increased length. Single-cell RNA sequencing of the testes uncovered altered expression of genes related to sperm flagellum, acrosomal vesicle and spermatid development. We confirmed the expression of Fsip2 at the acrosome and the physical interaction of this gene with Acrv1, an acrosomal marker. Proteomic analysis of the testes revealed changes in proteins sited at the fibrous sheath, mitochondrial sheath and acrosomal vesicle. We also pinpointed the crucial motifs of Fsip2 that are evolutionarily conserved in species with internal fertilization. Thus, this work reveals the dosage-dependent roles of Fsip2 in sperm tail and acrosome formation.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Kent Riemondy ◽  
Xiao-jing Wang ◽  
Enrique C Torchia ◽  
Dennis R Roop ◽  
Rui Yi

In many mouse models of skin cancer, only a few tumors typically form even though many cells competent for tumorigenesis receive the same oncogenic stimuli. These observations suggest an active selection process for tumor-initiating cells. Here, we use quantitative mRNA- and miR-Seq to determine the impact of HrasG12V on the transcriptome of keratinocytes. We discover that microRNA-203 is downregulated by HrasG12V. Using a knockout mouse model, we demonstrate that loss of microRNA-203 promotes selection and expansion of tumor-initiating cells. Conversely, restoration of microRNA-203 using an inducible model potently inhibits proliferation of these cells. We comprehensively identify microRNA-203 targets required for Hras-initiated tumorigenesis. These targets include critical regulators of the Ras pathway and essential genes required for cell division. This study establishes a role for the loss of microRNA-203 in promoting selection and expansion of Hras mutated cells and identifies a mechanism through which microRNA-203 antagonizes Hras-mediated tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document