03/02491 The behaviour of trace elements from high temperature coal combustion process

2003 ◽  
Vol 44 (6) ◽  
pp. 401
2013 ◽  
Vol 805-806 ◽  
pp. 1478-1483 ◽  
Author(s):  
Bing Xu ◽  
Lun Jian Chen ◽  
Bao Lin Xing ◽  
Gui Yun Yi ◽  
Long Li

Pyrolysis chars at 500°C, 700°C, 900°C and coal combustion ashes were prepared to simulate the three zones residues of underground coal gasification. The contents of trace elements in solid residues, such as chromium, manganese, arsenic, cobalt, nickel and lead, were determined by using inductively coupled plasma mass spectroscopy (ICP-MS) and the enrichment factors were also calculated. By immersing the pyrolysis chars and coal combustion ashes in weakly acidic leaching liquid (pH=4, 5, 6), the leaching features of above trace elements and their potential threat on groundwater were characterized. Compared with the enrichment feature of Fe, the results indicate that CrMnCo stably exist in pyrolysis and combustion process; Ni and As get depleted in low-temperature pyrolysis chars, while enriched in 900°C chars and coal combustion ashes; Pb becomes enriched in ash, but gets depleted with the increase of pyrolysis temperature. The concentration of As in ash leachate is higher than the 5thclass of groundwater quality standard which may cause serious pollution; the concentration of Ni is below the 4thclass and may contaminate the groundwater; other elements in leachate have little influence on groundwater because of low concentrations below the 3rdclass of groundwater quality standard.


2020 ◽  
Vol 48 (11) ◽  
pp. 1356-1364
Author(s):  
Jun HAN ◽  
Yang-shuo LIANG ◽  
Bo ZHAO ◽  
Zi-jiang XIONG ◽  
Lin-bo QIN ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 540
Author(s):  
Yukyung Kim ◽  
Sanghyuck Lee ◽  
Hyeonseok Yoon

Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.


Author(s):  
I. A. Sofia Larsson ◽  
Anna-Lena Ljung ◽  
B. Daniel Marjavaara

AbstractThe flow field and coal combustion process in a pilot-scale iron ore pelletizing kiln is simulated using a computational fluid dynamics (CFD) model. The objective of the work is to investigate how the thermal effects from the flame affect the flow field. As expected, the combustion process with the resulting temperature rise and volume expansion leads to an increase of the velocity in the kiln. Apart from that, the overall flow field looks similar regardless of whether combustion is present or not. The flow field though affects the combustion process by controlling the mixing rates of fuel and air, governing the flame propagation. This shows the importance of correctly predicting the flow field in this type of kiln, with a large amount of process gas circulating, in order to optimize the combustion process. The results also justify the use of down-scaled, geometrically similar, water models to investigate kiln aerodynamics in general and mixing properties in particular. Even if the heat release from the flame is neglected, valuable conclusions regarding the flow field can still be drawn.


2020 ◽  
pp. 146808742096933
Author(s):  
Xiangyu Meng ◽  
Sicheng Liu ◽  
Jingchen Cui ◽  
Jiangping Tian ◽  
Wuqiang Long ◽  
...  

A novel method called high-pressure air (HPA) jet controlled compression ignition (JCCI) based on the compound thermodynamic cycle was investigated in this work. The combustion process of premixed mixture can be controlled flexibly by the high-pressure air jet compression, and it characterizes the intensified low-temperature reaction and two-stage high-temperature reaction. The three-dimensional (3D) computational fluid dynamics (CFD) numerical simulation was employed to study the emission formation process and mechanism, and the effects of high-pressure air jet temperature and duration on emissions were also investigated. The simulation results showed that the NOx formation is mainly affected by the first-stage high-temperature reaction due to the higher reaction temperature. Overall, this combustion mode can obtain ultra-low NOx emission. The second-stage high-temperature reaction plays an important role in the CO and THC formation caused by the mixing effect of the high-pressure air and original in-cylinder mixture. The increasing air jet temperature leads to a larger high-temperature in-cylinder region and more fuel in the first-stage reaction, and therefore resulting in higher NOx emission. However, the increasing air jet temperature can significantly reduce the CO and THC emissions. For the air jet duration comparisons, both too short and too long air jet durations could induce higher NOx emission. A higher air jet duration would result in higher CO emission due to the more high-pressure air jet with relatively low temperature.


Sign in / Sign up

Export Citation Format

Share Document