06/01690 Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous ‘molecular basket’ adsorbent

2006 ◽  
Vol 47 (4) ◽  
pp. 259
Keyword(s):  
2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


2021 ◽  
Vol 286 ◽  
pp. 02014
Author(s):  
Gheorghe Lăzăroiu ◽  
Lucian Mihăescu ◽  
Dana-Alexandra Ciupăgeanu ◽  
Rodica-Manuela Grigoriu ◽  
Dana-Andreya Bondrea

The paper presents an investigation on the conditions for implementing a methanation membrane decarbonator coupled to an energy installation that generates flue gases. The retention of the carbon dioxide content in the flue gases and its conversion to methane is envisaged. For start, low thermal power installations, employing natural gas as main fuel supply, are considered. Internal combustion engines (also working with natural gas fuel) are taken into account for the testing of the carbon dioxide retention process. For this, a classification of the flue gas composition by fuel categories is initially carried out. The decarbonation efficiency is defined and clarifications are made withal regarding the connection between the decarbonation installation and the energy plant. The first practical achievements are also presented, resulting from a decarbonator with a volume of 940 cm3 (having the inner diameter of 12 cm and a height of 50 cm). The results prove that the proposed solution has great potential for practical applications, further research being however necessary. In terms of operating costs (including hydrogen consumption), it is remarked that they can be reduced by exploiting the methane production and eliminating the carbon tax, extending the integration perspective form economic point of view.


2021 ◽  
Author(s):  
B. Chudnovsky ◽  
I. Chatskiy ◽  
A. Lazebnikov

Abstract Over the past decades there has been a dramatic increase in natural gas burning as the benign fossil fuel, offering far lower emissions than oil or coal. Its place had been established in a clean, or at least, cleaner energy future. Today, the national and international energy policy has been shifted to carbon neutrality — achieving net zero carbon emissions — and as result has moved natural gas from the “benign” to the “menace” category At present, there are chiefly two alternatives for fuel carbon neutrality under discussion: power-to-gas (PtG) producing methane (or synthetic natural gas, SNG, hydrogen etc.) and power-to-liquid, which stores electric power in the form of methanol. In opposite to other synthetic or fossil fuels, like synthetic methane, NG or hydrogen, methanol burning leads to significant reductions in emissions of nitrogen oxides without any substantial firing system design change. Burning of synthetic methane or hydrogen requires significant effort for NOx reduction. Hydrogen as a fuel offers many advantages in power production. It is a carbon-free fuel that can decarbonize power and heat generation, and transportation, to help meet long-term CO2 emission-reduction targets. However, things are different for NOx emissions are a different matter. The more hydrogen is added to a NG, the higher the NOx is anticipated. Dry Low NOx (DLN) combustor has traditionally mixed NG with sufficient air upstream the combustor, so burning can take place in a lean atmosphere to maintain a relatively cool flame and thus keep NOx down. That approach does not work so well when more hydrogen enters the picture due to auto ignition occurring in the premix zone. Some companies already have diffusion-type combustor technology where fuel and air are supplied separately. Combustion of hydrogen, specifically in diffusion mode, implies combustion with a hotter flame, leading to higher combustion temperatures and the formation of local hot spots. These, in turn, can cause NOx to increase. The generalized solution is to cool the flame using diluents, such as demineralized water, steam or nitrogen. However, reducing NOx, by dilution reduces efficiency compared to a DLN combustor. Another option of providing wide load range of GT operation, while maintaining low NOx emissions is fuel dilution with flue gas being recirculated from the exhaust (FGR - Flue gas recirculation). The present paper discusses the effect of burning renewable fuels produced from carbon dioxide and hydrogen which are being diluted with a flow of FGR on GT performance and emissions reduction in diffusion combustors. For the prediction of the combustion behavior a methodology that combines experimental work and computational simulations was used. Given the fact that due to the increase in renewable energy introduction into the grid, addition of renewable fuel-based energy produced from carbon dioxide becomes very significant. Hence, the development of enhanced firing systems burning synthetic clean fuels with low emissions is challenging and should be promoted. Using renewable fuels for energy supply would reduce the unfavorable impact of CO2 and allow meeting the targets established in the Kyoto and Paris Protocols.


2005 ◽  
Vol 86 (14-15) ◽  
pp. 1457-1472 ◽  
Author(s):  
Xiaochun Xu ◽  
Chunshan Song ◽  
Bruce G. Miller ◽  
Alan W. Scaroni
Keyword(s):  

1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


Sign in / Sign up

Export Citation Format

Share Document