97/01335 Thermodynamic analysis of the engine internal process to determine the suitability of vegetable oils as alternative fuels for diesel engines

1997 ◽  
Vol 38 (2) ◽  
pp. 105
Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 74
Author(s):  
Vladimir Markov ◽  
Vyacheslav Kamaltdinov ◽  
Sergey Devyanin ◽  
Bowen Sa ◽  
Anatoly Zherdev ◽  
...  

Biofuels derived from renewable plant materials are considered promising alternative fuels to decrease emissions of ICEs. This study aimed to justify the possibility of using vegetable oils of different sources as a 10% additive in blended biofuel for diesel engines of agricultural machinery and commercial vehicles. Seven different vegetable oils were investigated. Experiments have been performed by fueling a diesel engine with blended biofuels of 90% petroleum diesel fuel and 10% vegetable oil. In the maximum power and maximum torque modes, the brake power drop was no more than 1.5%, and the brake-specific fuel consumption increase was less than 4.3%; NOx emissions were reduced by up to 8.3%, exhaust smoke—up to 37.5%, CO—up to 20.0%, and unburned HC—up to 27.9%. In the operating modes of the European 13-mode steady-state test cycle, the integral specific emissions of HC decreased by up to 30.0%, integral specific emissions of CO—up to 15.0%, and integral specific emissions of NOx—up to 16.0%. The results obtained show the feasibility and rationality of using the investigated vegetable oils as a 10% additive in blended biofuel for diesel engines of agricultural machinery and commercial vehicles.


2021 ◽  
pp. 79-86
Author(s):  
O. Hrabovenko ◽  
S. Dotsenko ◽  
V. Nesterenko ◽  
I. Shvets

While being highly fuel-efficient, diesel engines are defined by relatively high emissions, which have a negative impact on people and the environment. In the future, most European countries plan to abandon the use of diesel engines after 2030. One way to use this type of engines is to convert them to alternative fuels from renewable energy sources, such as vegetable oils (rapeseed, sunflower and soya bean oils). A significant advantage of vegetable oils is that when they hit the ground, they break down in a couple of weeks. Sulfur oxides are virtually absent due to the small amount of sulfur in vegetable oils in the engine exhaust gases. Other environmental factors include reduced emissions of nitrogen oxides NOx, carbon monoxide CO, unburned hydrocarbons and carbon black C. However, it should be noted that the use of vegetable-based fuel involves problems related to fuel preparation, consideration of physical and chemical properties and proper engine operation and use of arable land for the cultivation of vegetable oils. The article presents the results of experimental studies to determine the effective performance of soybean oil, six cylinder, four-stroke supercharged diesel engine (26 – the diameter of the cylinder, cm; 34 – the piston stroke, cm) produced by "Pervomaiskdieselmash", which is a part of the stationary diesel generator (DGA-900) with the capacity of 900 kW. This diesel engine is with an undivided combustion chamber ("Geselman" type), gas turbine supercharging and intermediate charge air cooling. Soybean oil is more viscous and has better lubrication properties of conjugated vapors and engine components, as a result, the lifespan of the engine and high-pressure fuel pump increases by an average of 60%. However, more viscous soybean oil impairs fuel mixing, spraying and combustion. Starting qualities of the engine also deteriorate. On the other hand, as the temperature rises, the viscosity of soybean oil decreases sharply. The reasons which led to the emergence of the above-mentioned problems have been analysed. In addition, the features and advantages of the cogeneration power plant have been described, which makes it possible to obtain two forms of useful energy at the output such as thermal and electric. The use of cogeneration significantly increases the overall efficiency of the plant; it provides significant opportunities for efficient heat utilization and achieving maximum economic effect.


2016 ◽  
Vol 5 (5) ◽  
pp. 8-21
Author(s):  
Неверова ◽  
V. Neverova ◽  
Марков ◽  
V. Markov ◽  
Бовэнь ◽  
...  

The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. Fuels produced from vegetable oils and animal fats as advanced alternative fuels for diesel engines are considered. These fuels are produced from renewable raw materials and are characterized by good environmental qualities. Advantages of using fuels of vegetable origin as motor fuels are shown. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and mustard oil of various percentage is given. One of the most wide spread vegetable oils in Russia is mustard oil. Possible ways of using mustard oil as fuel for a diesel engine are considered. An opportunity of improving characteristics of exhaust gases toxicity by using these mixtures as a fuel for automobile and tractor diesel engines is demonstrated.


2011 ◽  
Vol 92 (10) ◽  
pp. 1980-1986 ◽  
Author(s):  
A. Kleinová ◽  
I. Vailing ◽  
J. Lábaj ◽  
J. Mikulec ◽  
J. Cvengroš

2021 ◽  
pp. 15-25
Author(s):  
V.M. Bgantsev

The use of biological fuels based on vegetable oils and other similar raw materials in diesel engines in developed countries can reduce the cost of mineral diesel fuel and improve the environment. This issue is relevant for Ukraine as well, in connection with which the governing bodies pay great attention to it. The deepening of knowledge in the study of the peculiarities of the flow of operating cycles of diesel engines, their power and toxic characteristics at the same time contributes to the optimization of the use of these types of fuel. In this work, the main issues related to the use of vegetable oils, such as sunflower, rapeseed, corn oils and their ethyl esters, both in pure form and in a mixture with mineral diesel fuel, are considered as a biological component of fuel. Theoretical issues and experimental data related to the use of these fuels in diesel engines are considered. Experimental studies were carried out on diesel engines D21A and four-cylinder - Skoda - an analogue of the 1.9-liter Volkswagen engine with turbocharging. Economic and toxic characteristics were obtained by load and speed characteristics. There is an increase in the consumption of mixed fuel in comparison with mineral fuel, the toxic characteristics were better in some indicators, in some cases, for example, when operating at increased capacities, they worsened relative to those when operating on mineral fuel. The basic principles of the effective use of biofuels in transport diesel engines are formulated in terms of energy and toxic indicators, as well as the corrosive effect of blended biofuels on fuel equipment. Today, gas stations in Ukraine only sell alternative fuels for gasoline engines. These are mixtures in various proportions of gasoline and bioethanol with a content of the latter up to 35–40% by volume. The price of such fuel is lower than the price of gasoline. Biodiesel fuels are not commercially available, although they would also cost less than mineral diesel fuel. It is likely that the use of biodiesel fuels is restrained due to the need to adapt the diesel engine to these fuels and to monitor the state of the fuel equipment. However, these costs are small and can be easily compensated for by the difference in the price of mineral and biodiesel fuels. It can be assumed that, first of all, biodiesel will be introduced into agricultural machinery.


2017 ◽  
Vol 19 (10) ◽  
pp. 1068-1078 ◽  
Author(s):  
Arunachalam Lakshminarayanan ◽  
Daniel B Olsen ◽  
Perry E Cabot

This study presents the combustion and emission results using a blend of unrefined triglycerides (straight vegetable oils) and regular unleaded gasoline in a compression ignition engine typically used in farming machinery. Most farm equipment is powered by diesel engines. A sizable cost of producing a crop on a farm can be attributed to fuel—diesel in such cases. Farmers and researchers have been interested in the use of alternative fuels, especially triglycerides, which could potentially bring down the fuel cost portion of the farm input costs. One of the major drawbacks of using unrefined triglycerides is poor cold flow properties due to high density and viscosity. To overcome this, the triglycerides can be blended with gasoline to lower the density and viscosity. This blend has been used in existing diesel engines without the need for any modification to the engine or its control system. The experiments were conducted on a 4.5-L Tier 3 engine. The fuel used was a blend of unrefined canola triglyceride and regular unleaded gasoline (10% by volume). Measurements include mass fraction burned combustion pressure, fuel consumption and pollutant emissions. The fuel consumption of TGB10 was lower than most straight vegetable oils found in the literature, but higher than diesel. The peak pressure of TGB10 was slightly higher than diesel and occurred earlier than diesel. The brake-specific NOx was lower than diesel at lower and no load points. Particulate matter emissions of TGB10 were higher than diesel at rated speed. Total hydrocarbon emissions were generally higher than diesel. CO emissions were lower than diesel except at low or no load points where they were significantly higher.


2009 ◽  
Vol 13 (3) ◽  
pp. 207-217 ◽  
Author(s):  
Rao Yarrapathruni ◽  
Sudheer Voleti ◽  
Reddy Pereddy ◽  
Raju Alluru

Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3796
Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Michal Holúbek ◽  
Zdeněk Aleš ◽  
Radek Pražan ◽  
...  

The global concentration of greenhouse gasses in the atmosphere is increasing as well as the emissions of harmful pollutants. Utilization of liquid biofuels in combustion engines helps to reduce these negative effects. For diesel engines, the most common alternative fuels are based on vegetable oils. Blending neat vegetable oils with diesel and/or alcohol fuels is a simple way to make them suitable for diesel engines. In this study, coconut oil was used in ternary fuel blends with diesel and butanol. Coconut oil is a potentially usable source of renewable energy, especially in the Pacific, where it is a local product. Diesel fuel-coconut oil-butanol fuel blends were used in concentrations of 70%/20%/10% and 60%/20%/20%, and 100% diesel fuel was used as a reference. The effect of the fuel blends on the production of harmful emissions, engine smoke, performance parameters, fuel consumption and solid particles production was monitored during the measurement. The engine was kept at a constant speed during the measurement and the load was selected at 50%, 75% and 100%. From the results, it can be stated that in comparison with diesel fuel, specific fuel consumption increased with a positive effect on the reduction of engine smoke.


2017 ◽  
Vol 0 (0) ◽  
pp. 0-0 ◽  
Author(s):  
Ferial Zaher ◽  
Omayma El-Kinawy ◽  
Hanaa Soliman ◽  
Adel Abdel-Razek

Sign in / Sign up

Export Citation Format

Share Document