Effects of triglyceride gasoline blends on combustion and emissions in a common rail direct injection diesel engine

2017 ◽  
Vol 19 (10) ◽  
pp. 1068-1078 ◽  
Author(s):  
Arunachalam Lakshminarayanan ◽  
Daniel B Olsen ◽  
Perry E Cabot

This study presents the combustion and emission results using a blend of unrefined triglycerides (straight vegetable oils) and regular unleaded gasoline in a compression ignition engine typically used in farming machinery. Most farm equipment is powered by diesel engines. A sizable cost of producing a crop on a farm can be attributed to fuel—diesel in such cases. Farmers and researchers have been interested in the use of alternative fuels, especially triglycerides, which could potentially bring down the fuel cost portion of the farm input costs. One of the major drawbacks of using unrefined triglycerides is poor cold flow properties due to high density and viscosity. To overcome this, the triglycerides can be blended with gasoline to lower the density and viscosity. This blend has been used in existing diesel engines without the need for any modification to the engine or its control system. The experiments were conducted on a 4.5-L Tier 3 engine. The fuel used was a blend of unrefined canola triglyceride and regular unleaded gasoline (10% by volume). Measurements include mass fraction burned combustion pressure, fuel consumption and pollutant emissions. The fuel consumption of TGB10 was lower than most straight vegetable oils found in the literature, but higher than diesel. The peak pressure of TGB10 was slightly higher than diesel and occurred earlier than diesel. The brake-specific NOx was lower than diesel at lower and no load points. Particulate matter emissions of TGB10 were higher than diesel at rated speed. Total hydrocarbon emissions were generally higher than diesel. CO emissions were lower than diesel except at low or no load points where they were significantly higher.

2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


2003 ◽  
Author(s):  
C. Purohit ◽  
K. Aung

Increasing concerns over pollutant emissions from diesel engines have prompted researchers to find replacement fuels for diesel engines. The use of alternative fuels such as biodiesel in compression-ignition (CI) engines is beneficial to the environment as it reduces emissions of pollutants with slight penalty on the performance. This paper investigated the use of biodiesel fuel (rapeseed oil) in a CI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, and engine speed on the performance of the CI engine. The results of the simulations were compared with experimental data from the literature to validate the simulations. Good agreements between the computed and experimental results were obtained. The results showed that the current model could satisfactorily predict the performance of a biodiesel-fueled CI engine.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3796
Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Michal Holúbek ◽  
Zdeněk Aleš ◽  
Radek Pražan ◽  
...  

The global concentration of greenhouse gasses in the atmosphere is increasing as well as the emissions of harmful pollutants. Utilization of liquid biofuels in combustion engines helps to reduce these negative effects. For diesel engines, the most common alternative fuels are based on vegetable oils. Blending neat vegetable oils with diesel and/or alcohol fuels is a simple way to make them suitable for diesel engines. In this study, coconut oil was used in ternary fuel blends with diesel and butanol. Coconut oil is a potentially usable source of renewable energy, especially in the Pacific, where it is a local product. Diesel fuel-coconut oil-butanol fuel blends were used in concentrations of 70%/20%/10% and 60%/20%/20%, and 100% diesel fuel was used as a reference. The effect of the fuel blends on the production of harmful emissions, engine smoke, performance parameters, fuel consumption and solid particles production was monitored during the measurement. The engine was kept at a constant speed during the measurement and the load was selected at 50%, 75% and 100%. From the results, it can be stated that in comparison with diesel fuel, specific fuel consumption increased with a positive effect on the reduction of engine smoke.


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Author(s):  
M M Roy

This study investigated the effect of n-heptane and n-decane on exhaust odour in direct injection (DI) diesel engines. The prospect of these alternative fuels to reduce wall adherence and overleaning, major sources of incomplete combustion, as well as odorous emissions has been investigated. The n-heptane was tested as a low boiling point fuel that can improve evaporation as well as wall adherence. However, the odour is a little worse with n-heptane and blends than that of diesel fuel due to overleaning of the mixture. Also, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing n-heptane content. The n-decane was tested as a fuel with a high cetane number that can improve ignition delay, which has a direct effect on wall adherence and overleaning. However, with n-decane and blends, the odour rating is about 0.5-1 point lower than for diesel fuel. Moreover, the aldehydes and THC are significantly reduced. This is due to less wall adherence and proper mixture formation.


Author(s):  
Muataz Abotabik ◽  
Richard T. Meyer

Major interests in the automotive industry include the use of alternative fuels and reduced fuel usage to address fuel supply security concerns and regulatory requirements. The majority of previous internal combustion engine (ICE) control strategies consider only the First Law of Thermodynamics (FLT). However, FLT is not able to distinguish losses in work potential due to irreversibilities, e.g., up to 25% of fuel exergy may be lost to irreversibilities. To account for these losses, the Second Law of Thermodynamics (SLT) is applicable. The SLT is used to identify the quality of an energy source via availability since not all the energy in a particular energy source is available to produce work; therefore optimal control that includes availability may be another path toward reduced fuel use. Herein, Model Predictive Control (MPC) is developed for both FLT and SLT approaches where fuel consumption is minimized in the former and availability destruction in the latter. Additionally, both include minimization of load tracking error. The controls are evaluated in the simulation of a single cylinder naturally aspirated compression ignition engine that is fueled with either 20% biodiesel and 80% diesel blend or diesel only. Control simulations at a constant engine speed and changing load profile show that the SLT approach results in higher SLT efficiency, reduced specific fuel consumption, and decreased NOx emissions. Further, compared to use of diesel only, use of the biodiesel blend resulted in less SLT efficiency, higher specific fuel consumption, and lower NOx emissions.


2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Helmisyah Ahmad Jalaludin ◽  
Mohd Ruysdi Ramliy ◽  
Nik Rosli Abdullah ◽  
Salmiah Kasolang ◽  
Shahrir Abdullah ◽  
...  

The sudden increase in fuel prices due to diminishing petroleum resources and the pollution resulting from its use has resulted in research into alternative fuels such as biodiesel. In addition, the faster combustion and high temperature in the combustion chamber which results from petroleum diesel fuel leads to higher nitrogen oxide (NOx) and Particulate Matter (PM) emissions. Therefore, this research was conducted to investigate the effect of using palm oil methyl ester (POME) blends as alternative fuels on the performance and emission of a compression ignition engine. The performance of POME blends and diesel were compared by manipulating the load of the engine at 1800 rpm. The results obtained show that fuel consumption rate is higher for the POME blends compared to the diesel fuel and increases as the POME concentration increases. The increment of brake specific fuel consumption and the reduction of CO emission exhibit a relation to the increase in percentage of POME. This is mainly contributed by the higher oxygen content of POME which promotes complete combustion of the blends. However, efficient combustion from the blends as compared to diesel fuel resulted from higher oxygen content and cetane number leads to significant increase in exhaust temperature. This in turn increases NOx emissions since using POME blends is highly related to high temperature of combustion chamber. The experimental results proved that POME in compression ignition engine is a possible substitute to diesel.


2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Jonas Asprion ◽  
Oscar Chinellato ◽  
Lino Guzzella

In response to the increasingly stringent emission regulations and a demand for ever lower fuel consumption, diesel engines have become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results. The measurement results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles.


2014 ◽  
Vol 490-491 ◽  
pp. 987-991
Author(s):  
Mustafa Kaan Baltacioğlu ◽  
Kadi̇r Aydin ◽  
Ergül Yaşar ◽  
Hüseyi̇n Turan Arat ◽  
Çağlar Conker ◽  
...  

In this study, effect of anisole additive into the diesel fuel on performance and emission parameters of diesel engines was investigated. Instead of structural changes which are more difficult and expensive, development of fuel technologies is preferred to provide reduction on exhaust gas emissions which are harmful to environment and human health. Therefore, in this experimental study, anisole was used as additive into diesel fuel with the volumetric ratio of 1,5%, 3% and 5%. The performance characteristics and exhaust emissions of a four cylinder, four stroke, naturally aspirated, water cooled, direct injection compression ignition engine fueled with modified fuels were analyzed. Engine was subjected constant speed, full load conditions during tests. Engine power, torque, specific fuel consumption, carbon monoxide, nitrogen oxide and carbon dioxide emissions were measured and results were evaluated. Changes in performance parameters were negligible for all ratios of modified fuels except specific fuel consumption. Finally, while carbon monoxide gas emissions were increased with anisole additive, carbon dioxide and nitrogen oxide gas emissions were decreased.


Sign in / Sign up

Export Citation Format

Share Document