Exhaust system for internal combustion engines

1997 ◽  
Vol 23 (3) ◽  
pp. IV-V
Author(s):  
H Friedman
2021 ◽  
pp. 41-47
Author(s):  
Vladimir Tupov ◽  
O. Matasova

Insertion losses as the main characteristic that mathematically describes the acoustic efficiency of a noise silencer has been considered. This characteristic shows the reduction of noise generated by its source, in particular by the internal combustion engine’s exhaust system, at the control point as a silencer use result. Has been presented a mathematical description of the insertion losses, and have been considered parameters necessary for calculating this characteristic. Has been demonstrated the analytical dependence of impedance for the sound emission by the exhaust system’s end hole from the coefficient of acoustic waves reflection by this hole. The performed analysis of the widely used formulas for calculating the coefficient of sound reflection by the end hole has showed their insufficient accuracy for project designs performing. Have been proposed calculation dependences providing high accuracy for calculations of the reflection coefficient modulus, and the attached length of the channel end hole without a flange in the entire range of the existence of plane waves in it. It has been shown that the end correction of this hole at ka = 0 is 0.6127, and not 0.6133, as it was mistakenly believed until now in world acoustics. Has been proposed a method for calculation the exhaust noise source internal impedance. This method more accurately, in comparison with the already known ones, describes the acoustic processes in the internal combustion engine’s exhaust manifold, thanks to increases the accuracy of calculation the silencer acoustic efficiency, that allows develop the silencer at the early stages of the design of an automotive internal combustion engine.


Author(s):  
I.B. Lias ◽  
H.B. Sharudin ◽  
M.H.B. Ismail ◽  
A.M.I.B. Mamat

The purpose of this study is to identify and analyse the calculation of exhaust gas heat produce (EGHP) in internal combustion engine (ICE) based on three types of fuel used specifically Petrol Ron 95, Petrol Ron 97 and Vpower racing base. The experimental test rig has used 1.6 CamPro Proton engine with 1561cc capacity and dynamometer. The calculation has used the basic formula of heat transfer equation and heat loss through the exhaust that included the mass flow rate of exhaust gas, specific heat of exhaust gas and temperature gradient. The exhaust temperature of ICE is generally in range from 400C to 600C and exhaust gas heat transfer affects the emissions burn-up in the exhaust system. This contributes significantly to the engine requirement. The experimental data was statistically analysed to identify the unknown parameter. High correlation of data variables can be determined based on the heat loss produced or EGHP. This also has significance by using different types of fuel in ICE.


2013 ◽  
Vol 446-447 ◽  
pp. 858-862
Author(s):  
Hasan Aydogan ◽  
A. Engin Ozcelik ◽  
Mustafa Acaroglu ◽  
Hakan Işik

Internal combustion engines are widely used in our day. Internal combustion engines first transform fuel energy into heat energy. Afterwards, approximately 30% of this heat energy is transformed into mechanical energy. Approximately 5% of the heat energy is expelled through friction and radiation, 30% through cooling and 35% through the exhaust system. In the present study, electricity was generated by using thermoelectric equipment and the waste heat expelled from the exhaust system. It was observed that as the exhaust temperature increased, the amount of electricity generated also increased.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6041
Author(s):  
Ming-Hsien Hsueh ◽  
Chia-Nan Wang ◽  
Meng-Chang Hsieh ◽  
Chao-Jung Lai ◽  
Shi-Hao Wang ◽  
...  

Industries’ air pollution causes serious challenges to modern society, among them exhaust gases from internal combustion engines, which are currently one of the main sources. This study proposes a non-thermal plasma (NTP) system for placement in the exhaust system of internal combustion engines to reduce the toxic contaminants (HC, CO, and NOx) of exhaust gases. This NTP system generates a high-voltage discharge that not only responds to the ion chemical reaction to eliminate NOx and CO, but that also generates a combustion reaction at the local high temperature of plasma to reduce HC. The NTP system was designed on both the front and rear of the exhaust pipe to analyze the difference of different exhaust flow rates under the specified frequency. The results indicate that the NTP system can greatly reduce toxic contaminants. The NTP reactor placed in the front of exhaust pipe gave HC and CO removal efficiency of about 34.5% and 16.0%, respectively, while the NTP reactor placed in the rear of exhaust pipe gave NOx removal efficiency of about 41.3%. In addition, the voltage and material directly affect the exhaust gases obviously. In conclusion, the proposed NTP system installed in the exhaust system can significantly reduce air pollutants. These results suggest that applying NTP to the combustion engine should be a useful tool to simultaneously reduce both emissions of NOx and CO.


2020 ◽  
Vol 221 ◽  
pp. 02006
Author(s):  
Irina Belinskaia ◽  
Rahim Zainetdinov ◽  
Konstantin Evdokimov

The problem of negative impact on the environment of motor transport is one of the most fundamental in the complex of global problems. The constant increase in the number of cars with internal combustion engines encourages the search for methods and ways to reduce the volume of negative impulses. The operation of heat engines is accompanied by significant emissions of gaseous harmful substances into the atmosphere, i.e. nitrogen oxides, carbon monoxide, hydrocarbons, as well as solid particles, including soot. The solution to this problem should be implemented within the framework of a systematic approach. To do this, it is necessary to combine the study of technical, economic, and organizational approaches to the organization of the exhaust gas disposal process. To date, there is a significant methodological base in the field of organizational and economic decisions. The article discusses various methods of cleaning exhaust gases of piston engines, their advantages and disadvantages are noted. The method of processing using ammonia is widely known. It is noted that a catalytic method for reducing nitrogen oxides using ammonia is quite economical. However, the optimal temperature range at which nitrogen oxides are reduced is rather narrow. To solve this problem, it is proposed to use the vortex effect in the exhaust system. The efficiency of using a vortex gas recirculation pipe is due to its significant influence on the thermal gasdynamic processes occurring in the exhaust system. Using the principles of non-equilibrium thermodynamics allows us to take into account dissipative processes when establishing the relationship of fuel and economic indicators of internal combustion engines with thermodynamic parameters. This significantly increases the accuracy of calculations and allows you to develop measures to reduce the level of negative impact on the environment.


2019 ◽  
Vol 20 (1-2) ◽  
pp. 241-245
Author(s):  
Karol Grab-Rogaliński

One of the major problems in internal combustion engines is emission of pollutants with exhaust gases. Those pollutants are not only harmful for environment but also for humans. To decrease emission of pollutants many mechanical and chemical methods are used in internal combustion engines especially in exhaust system such as TWC, DPF, SCR. Alternative way for decrease in exhaust gas pollutants is use of alternative fuel as a primary energy carrier or as an additional fuel for base hydrocarbon one. In this studies the hydrogen was used as a additional fuel to methane. Both fuels were delivered to intake manifold. The share of the fuel was 100/0 methane/hydrogen and 70/30 methane/hydrogen. The addition of hydrogen to base fuel shown decrease of exhaust pollutants from engine and increase in engine operating parameters.


Author(s):  
E.A. Sukhovaya ◽  
D.A. Telyashov ◽  
G.I. Pavlov ◽  
P.V. Nakoryakov ◽  
M.A. Nikitin

Currently, there is a high increase in production of air vehicles equipped with low-power internal combustion engines. The main demasking factor of such engines is the high noise of their exhaust system. To solve this problem, we made a test bench on which we estimated the efficiency of several alternate designs of mufflers. In the course of work, we studied the influence of various internal elements of the muffler on its hydrodynamic resistance and noise attenuation efficiency. According to the results obtained, we found the best design alternate design of the muffler, which effectively coped with its role.


2017 ◽  
Vol 169 (2) ◽  
pp. 97-100
Author(s):  
Krzysztof LESIAK ◽  
Marek BRZEZANSKI

Analyses the problems occurring in the exploitation combustion engines used in mining have been presented in article. Design solutions used at present to protect the intake and exhaust systems of internal combustion engines operated in underground hard coal mines have been also described. A new design concept of exhaust system have been presented.


Sign in / Sign up

Export Citation Format

Share Document