SP-0365 Overview of AI-based methods for automatic contouring of OARs and tumours

2021 ◽  
Vol 161 ◽  
pp. S270
Author(s):  
C. Brouwer
Keyword(s):  
1971 ◽  
Vol 9 (2-3) ◽  
pp. 167
Author(s):  
G.D. Lodwick ◽  
J. Whittle

2007 ◽  
Vol 34 (6Part17) ◽  
pp. 2551-2551
Author(s):  
D Chase ◽  
C Ramsey ◽  
R Seibert ◽  
B Robison

Geophysics ◽  
1972 ◽  
Vol 37 (4) ◽  
pp. 669-674 ◽  
Author(s):  
R. C. Hessing ◽  
Henry K. Lee ◽  
Alan Pierce ◽  
Eldon N. Powers

A method is described for using a digital computer to construct contour maps automatically. Contour lines produced by this method have correct relations to given discrete data points regardless of the spatial distribution of these points. The computer‐generated maps are comparable to those drawn manually. The region to be contoured is divided into quadrilaterals whose vertices include the data points. After supplying values at each of the remaining vertices by using a surface‐fitting technique, bicubic functions are constructed on each quadrilateral to form a smooth surface through the data points. Points on a contour line are obtained from these surfaces by solving the resulting cubic equations. The bicubic functions may be used for other calculations consistent with the contour maps, such as interpolation of equally spaced values, calculation of cross‐sections, and volume calculations.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
S Alabed ◽  
K Karunasaagarar ◽  
F Alandejani ◽  
P Garg ◽  
J Uthoff ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): Wellcome Trust (UK), NIHR (UK) Introduction Cardiac magnetic resonance (CMR) measurements have significant diagnostic and prognostic value. Accurate and repeatable measurements are essential to assess disease severity, evaluate therapy response and monitor disease progression. Deep learning approaches have shown promise for automatic left ventricular (LV) segmentation on CMR, however fully automatic right ventricular (RV) segmentation remains challenging. We aimed to develop a biventricular automatic contouring model and evaluate the interstudy repeatability of the model in a prospectively recruited cohort. Methods A deep learning CMR contouring model was developed in a retrospective multi-vendor (Siemens and General Electric), multi-pathology cohort of patients, predominantly with heart failure, pulmonary hypertension and lung diseases (n = 400, ASPIRE registry). Biventricular segmentations were made on all CMR studies across cardiac phases. To test the accuracy of the automatic segmentation, 30 ASPIRE CMRs were segmented independently by two CMR experts. Each segmentation was compared to the automatic contouring with agreement assessed using the Dice similarity coefficient (DSC).  A prospective validation cohort of 46 subjects (10 healthy volunteers and 36 patients with pulmonary hypertension) were recruited to assess interstudy agreement of automatic and manual CMR assessments. Two CMR studies were performed during separate sessions on the same day. Interstudy repeatability was assessed using intraclass correlation coefficient (ICC) and Bland-Altman plots.  Results DSC showed high agreement (figure 1) comparing automatic and expert CMR readers, with minimal bias towards either CMR expert. The scan-scan repeatability CMR measurements were higher for all automatic RV measurements (ICC 0.89 to 0.98) compared to manual RV measurements (0.78 to 0.98). LV automatic and manual measurements were similarly repeatable (figure 2). Bland-Altman plots showed strong agreement with small mean differences between the scan-scan measurements (figure 2). Conclusion Fully automatic biventricular short-axis segmentations are comparable with expert manual segmentations, and have shown excellent interstudy repeatability.


2020 ◽  
Vol 10 ◽  
Author(s):  
Simon K. B. Spohn ◽  
Maria Kramer ◽  
Selina Kiefer ◽  
Peter Bronsert ◽  
August Sigle ◽  
...  

PurposeAccurate contouring of intraprostatic gross tumor volume (GTV) is pivotal for successful delivery of focal therapies and for biopsy guidance in patients with primary prostate cancer (PCa). Contouring of GTVs, using 18-Fluor labeled tracer prostate specific membrane antigen positron emission tomography ([18F]PSMA-1007/PET) has not been examined yet.Patients and MethodsTen Patients with primary PCa who underwent [18F]PSMA-1007 PET followed by radical prostatectomy were prospectively enrolled. Coregistered histopathological gross tumor volume (GTV-Histo) was used as standard of reference. PSMA-PET images were contoured on two ways: (1) manual contouring with PET scaling SUVmin-max: 0–10 was performed by three teams with different levels of experience. Team 1 repeated contouring at a different time point, resulting in n = 4 manual contours. (2) Semi-automatic contouring approaches using SUVmax thresholds of 20–50% were performed. Interobserver agreement was assessed for manual contouring by calculating the Dice Similarity Coefficient (DSC) and for all approaches sensitivity, specificity were calculated by dividing the prostate in each CT slice into four equal quadrants under consideration of histopathology as standard of reference.ResultsManual contouring yielded an excellent interobserver agreement with a median DSC of 0.90 (range 0.87–0.94). Volumes derived from scaling SUVmin-max 0–10 showed no statistically significant difference from GTV-Histo and high sensitivities (median 87%, range 84–90%) and specificities (median 96%, range 96–100%). GTVs using semi-automatic segmentation applying a threshold of 20–40% of SUVmax showed no significant difference in absolute volumes to GTV-Histo, GTV-SUV50% was significantly smaller. Best performing semi-automatic contour (GTV-SUV20%) achieved high sensitivity (median 93%) and specificity (median 96%). There was no statistically significant difference to SUVmin-max 0–10.ConclusionManual contouring with PET scaling SUVmin-max 0–10 and semi-automatic contouring applying a threshold of 20% of SUVmax achieved high sensitivities and very high specificities and are recommended for [18F]PSMA-1007 PET based focal therapy approaches. Providing high specificities, semi-automatic approaches applying thresholds of 30–40% of SUVmax are recommend for biopsy guidance.


Sign in / Sign up

Export Citation Format

Share Document