1206 Glutamate induces rapid nuclear changes and a delayed cell death selectively in CA1 neurons of a rat organotypic hippocampal culture

1997 ◽  
Vol 28 ◽  
pp. S150
Author(s):  
Susumu Terakawa ◽  
Seiji Yamamoto ◽  
Takashi Sakurai ◽  
Shinji Matsumura
2020 ◽  
Vol 13 (10) ◽  
pp. 288
Author(s):  
Marielza Andrade Nunes ◽  
Mariana Toricelli ◽  
Natalia Mendes Schöwe ◽  
Helena Nascimento Malerba ◽  
Karis Ester Dong-Creste ◽  
...  

Background: Alzheimer’s disease is mainly characterized by remarkable neurodegeneration in brain areas related to memory formation. This progressive neurodegeneration causes cognitive impairment, changes in behavior, functional disability, and even death. Our group has demonstrated changes in the kallikrein–kinin system (KKS) in Alzheimer’s disease (AD) experimental models, but there is a lack of evidence about the role of the KKS in Alzheimer’s disease. Aim: In order to answer this question, we evaluated the potential of the kinin B2 receptors (BKB2R) to modify AD characteristics, particularly memory impairment, neurodegeneration, and Aβ peptide deposition. Methods: To assess the effects of B2, we used transgenic Alzheimer’s disease mice treated with B2 receptor (B2R) agonists and antagonists, and performed behavioral and biochemical tests. In addition, we performed organotypic hippocampal culture of wild-type (WT) and transgenic (TG) animals, where the density of cytokines, neurotrophin BDNF, activated astrocyte marker S100B, and cell death were analyzed after treatments. Results: Treatment with the B2R agonist preserved the spatial memory of transgenic mice and decreased amyloid plaque deposition. In organotypic hippocampal culture, treatment with B2R agonist decreased cell death, neuroinflammation, and S100B levels, and increased BDNF release. Conclusions: Our results indicate that the kallikrein–kinin system plays a beneficial role in Alzheimer’s disease through B2R activation. The use of B2R agonists could, therefore, be a possible therapeutic option for patients diagnosed with Alzheimer’s disease.


Resuscitation ◽  
2001 ◽  
Vol 50 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Toshiyuki Yano ◽  
Ryosuke Nakayama ◽  
Takashi Imaizumi ◽  
Hidenori Terasaki ◽  
Kazuo Ushijima

2001 ◽  
Vol 21 (12) ◽  
pp. 1411-1421 ◽  
Author(s):  
Kunlin Jin ◽  
Steven H. Graham ◽  
Xiaoou Mao ◽  
Tetsuya Nagayama ◽  
Roger P. Simon ◽  
...  

Cell death–regulatory genes like caspases and bcl-2 family genes are involved in delayed cell death in the CA1 sector of hippocampus after global cerebral ischemia, but little is known about the mechanisms that trigger their expression. The authors found that expression of Fas and Fas-ligand messenger ribonucleic acid and protein was induced in vulnerable CA1 neurons at 24 and 72 hours after global ischemia. Fas-associating protein with a novel death domain (FADD) also was upregulated and immunoprecipitated and co-localized with Fas. Caspase-10 was activated and interacted with FADD protein to an increasing extent as the duration of ischemia increased. Moreover, caspase-10 co-localized with both FADD and caspase-3. These findings suggest that Fas-mediated death signaling may play an important role in signaling hippocampal neuronal death in CA1 after global cerebral ischemia.


2021 ◽  
Vol 22 (6) ◽  
pp. 3275
Author(s):  
Andrea Tapia-Bustos ◽  
Carolyne Lespay-Rebolledo ◽  
Valentina Vío ◽  
Ronald Pérez-Lobos ◽  
Emmanuel Casanova-Ortiz ◽  
...  

The effect of perinatal asphyxia (PA) on oligodendrocyte (OL), neuroinflammation, and cell viability was evaluated in telencephalon of rats at postnatal day (P)1, 7, and 14, a period characterized by a spur of neuronal networking, evaluating the effect of mesenchymal stem cell (MSCs)-treatment. The issue was investigated with a rat model of global PA, mimicking a clinical risk occurring under labor. PA was induced by immersing fetus-containing uterine horns into a water bath for 21 min (AS), using sibling-caesarean-delivered fetuses (CS) as controls. Two hours after delivery, AS and CS neonates were injected with either 5 μL of vehicle (10% plasma) or 5 × 104 MSCs into the lateral ventricle. Samples were assayed for myelin-basic protein (MBP) levels; Olig-1/Olig-2 transcriptional factors; Gglial phenotype; neuroinflammation, and delayed cell death. The main effects were observed at P7, including: (i) A decrease of MBP-immunoreactivity in external capsule, corpus callosum, cingulum, but not in fimbriae of hippocampus; (ii) an increase of Olig-1-mRNA levels; (iii) an increase of IL-6-mRNA, but not in protein levels; (iv) an increase in cell death, including OLs; and (v) MSCs treatment prevented the effect of PA on myelination, OLs number, and cell death. The present findings show that PA induces regional- and developmental-dependent changes on myelination and OLs maturation. Neonatal MSCs treatment improves survival of mature OLs and myelination in telencephalic white matter.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohammed A. Sayed ◽  
Wael Eldahshan ◽  
Mahmoud Abdelbary ◽  
Bindu Pillai ◽  
Waleed Althomali ◽  
...  

AbstractPost-stroke cognitive impairment (PSCI) is a major source of disability, affecting up to two thirds of stroke survivors with no available therapeutic options. The condition remains understudied in preclinical models due to its delayed presentation. Although hypertension is a leading risk factor for dementia, how ischemic stroke contributes to this neurodegenerative condition is unknown. In this study, we used a model of hypertension to study the development of PSCI and its mechanisms. Spontaneously hypertensive rats (SHR) were compared to normotensive rats and were subjected to 1-h middle cerebral artery occlusion or sham surgery. Novel object recognition, passive avoidance test and Morris water maze were used to assess cognition. In addition, brain magnetic resonance images were obtained 12-weeks post-stroke and tissue was collected for immunohistochemistry and protein quantification. Stroked animals developed impairment in long-term memory at 4-weeks post-stroke despite recovery from motor deficits, with hypertensive animals showing some symptoms of anhedonia. Stroked SHRs displayed grey matter atrophy and had a two-fold increase in apoptosis in the ischemic borderzone and increased markers of inflammatory cell death and DNA damage at 12 weeks post-stroke. This indicates that preexisting hypertension exacerbates the development of secondary neurodegeneration after stroke beyond its acute effects on neurovascular injury.


1999 ◽  
Vol 19 (14) ◽  
pp. 5932-5941 ◽  
Author(s):  
James J. Velier ◽  
Julie A. Ellison ◽  
Kristine K. Kikly ◽  
Patricia A. Spera ◽  
Frank C. Barone ◽  
...  

2007 ◽  
Vol 86 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Barbara Mioduszewska ◽  
Jacek Jaworski ◽  
Arek W. Szklarczyk ◽  
Agata Klejman ◽  
Leszek Kaczmarek

Sign in / Sign up

Export Citation Format

Share Document