hippocampal culture
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Takahiro Fujimoto ◽  
Takeshi Yaoi ◽  
Kenta Nakano ◽  
Tetsuya Arai ◽  
Tadashi Okamura ◽  
...  

Abstract Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathies, is a fatal X-linked recessive neuromuscular disorder characterized by progressive muscle degeneration and various extents of intellectual disabilities. Physiological and pathological roles of the responsible gene, dystrophin, in the brain remain elusive due to the presence of multiple dystrophin products, mainly full-length dystrophin, Dp427, and the short product, Dp71. In this study, we generated a Dp71-specific hemagglutinin (HA) peptide tag-insertion mice to enable specific detection of intrinsic Dp71 expression by anti-HA tag antibodies. Immunohistochemical detections in the transgenic mice demonstrated Dp71 expression not only at the blood-brain barrier, where astrocytic endfeet surround the microvessels, but also at the inhibitory postsynapse of hippocampal dentate granule neurons. Interestingly, hippocampal cornu ammonis (CA)1 pyramidal neurons were negative for Dp71 although Dp427 detected by anti-dystrophin antibody was clearly present at the inhibitory postsynapse, suggesting cell-type dependent dystrophin expressions. Precise examination using the primary hippocampal culture validated exclusive localization of Dp71 at the inhibitory postsynaptic compartment but not at the excitatory synapse in neurons. We further performed interactome analysis and found that Dp71 formed distinct molecular complexes, i.e. synapse-associated Dp71 interacted with dystroglycan (Dg) and dystrobrevinb (Dtnb) whereas glia-associated Dp71 did with Dg and dystrobrevina (Dtna). Thus, our data indicates that Dp71 and its binding partners are relevant to the inhibitory postsynaptic function of hippocampal granule neurons and the novel Dp71-transgenic mouse provides a valuable tool to understand precise physiological expressions and functions of Dp71 and its interaction proteins in vivo and in vitro.


2021 ◽  
Vol 7 (13) ◽  
pp. eabf9180
Author(s):  
A. Duro-Castano ◽  
C. Borrás ◽  
V. Herranz-Pérez ◽  
M. C. Blanco-Gandía ◽  
I. Conejos-Sánchez ◽  
...  

Alzheimer’s disease (AD), the most prevalent form of dementia, remains incurable mainly due to our failings in the search for effective pharmacological strategies. Here, we describe the development of targeted multimodal polypeptide-based nanoconjugates as potential AD treatments. Treatment with polypeptide nanoconjugates bearing propargylamine moieties and bisdemethoxycurcumin or genistein afforded neuroprotection and displayed neurotrophic effects, as evidenced by an increase in dendritic density of pyramidal neurons in organotypic hippocampal culture. The additional conjugation of the Angiopep-2 targeting moiety enhanced nanoconjugate passage through the blood-brain barrier and modulated brain distribution with nanoconjugate accumulation in neurogenic areas, including the olfactory bulb. Nanoconjugate treatment effectively reduced neurotoxic β amyloid aggregate levels and rescued impairments to olfactory memory and object recognition in APP/PS1 transgenic AD model mice. Overall, this study provides a description of a targeted multimodal polyglutamate-based nanoconjugate with neuroprotective and neurotrophic potential for AD treatment.


2020 ◽  
Vol 6 (4) ◽  
pp. 43-49
Author(s):  
Elena V. Semeleva ◽  
Ekaterina V. Blinova ◽  
Andrey V. Zaborovsky ◽  
Irina A. Gromova ◽  
Asliddin S. Shukurov ◽  
...  

Introduction: The study aim was to explore a neuroprotective action of magnesium (LKhT-317) and zinc (LKhT-318) taurine salts on experimental models of reperfusion brain damage in rats and cell culture. Materials and methods: The study was performed on male Sprague Dawley rats, and rat’s hippocampal mixed neuroglial cell culture. Magnesium- (LKhT-317) and zinc-containing (LKhT-318) derivatives of taurine were studied. Reperfusion brain damage was induced 30 min after intraluminal cerebral middle artery occlusion. Severity of the injury was assessed by local blood flowmetry, neurological symptoms scaling and brain tissue staining. Levels of IL-1b, IL-10 and TNF-alpha in tissue were determined by qualitative ELISA. Caspase-3 and Bcl-2 expressions were detected by IHC. Neurons survival was assessed by cytochemistry. Cellular calcium responses were detected by fluorescent microscopy of Fura-2-containig cells. Results and discussion: Metal-containing taurine derivatives – LKhT-317 and LKhT-318 – demonstrated a sufficient neuroprotective property in rats with a reperfusion-induced brain injury. Both derivatives effectively prevented severity of the animals’ brain damage, motor deficiency, reduction of microvascular perfusion, and proinflammatory cytokines production. Magnesium-containing compound LKhT-317 was comparatively more effective than zinc-containing one. LKhT-317 possessed an anti-apoptotic action in vivo, and protected neurons from OGD-mediated cell death in mixed hippocampal culture. The aforementioned actions may be associated with an LKhT-317 inhibitory effect on NMDA-induced cellular Ca2+ response and, therefore, the anti-excitotoxic property of the compound. Conclusion: Magnesium- and zinc-containing taurine derivatives may be considered as promising neuroprotectors in the reperfusion-induced brain injury.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Donghee Kang ◽  
Wonjung Shin ◽  
Hyunjeong Yoo ◽  
Seongjae Kim ◽  
Seongju Lee ◽  
...  

Abstract Cep215 (also known as Cdk5rap2) is a centrosome protein which is involved in microtubule organization. Cep215 is also placed at specific subcellular locations and organizes microtubules outside the centrosome. Here, we report that Cep215 is involved in morphological differentiation of astrocytes. Cep215 was specifically localized at the glial processes as well as centrosomes in developing astrocytes. Morphological differentiation of astrocytes was suppressed in the Cep215-deleted P19 cells and in the Cep215-depleted embryonic hippocampal culture. We confirm that the microtubule organizing function of Cep215 is critical for the glial process formation. However, Cep215 is not involved in the regulation of cell proliferation nor cell specification. Based on the results, we propose that Cep215 organizes microtubules for glial process formation during astrocyte differentiation.


2020 ◽  
Vol 13 (10) ◽  
pp. 288
Author(s):  
Marielza Andrade Nunes ◽  
Mariana Toricelli ◽  
Natalia Mendes Schöwe ◽  
Helena Nascimento Malerba ◽  
Karis Ester Dong-Creste ◽  
...  

Background: Alzheimer’s disease is mainly characterized by remarkable neurodegeneration in brain areas related to memory formation. This progressive neurodegeneration causes cognitive impairment, changes in behavior, functional disability, and even death. Our group has demonstrated changes in the kallikrein–kinin system (KKS) in Alzheimer’s disease (AD) experimental models, but there is a lack of evidence about the role of the KKS in Alzheimer’s disease. Aim: In order to answer this question, we evaluated the potential of the kinin B2 receptors (BKB2R) to modify AD characteristics, particularly memory impairment, neurodegeneration, and Aβ peptide deposition. Methods: To assess the effects of B2, we used transgenic Alzheimer’s disease mice treated with B2 receptor (B2R) agonists and antagonists, and performed behavioral and biochemical tests. In addition, we performed organotypic hippocampal culture of wild-type (WT) and transgenic (TG) animals, where the density of cytokines, neurotrophin BDNF, activated astrocyte marker S100B, and cell death were analyzed after treatments. Results: Treatment with the B2R agonist preserved the spatial memory of transgenic mice and decreased amyloid plaque deposition. In organotypic hippocampal culture, treatment with B2R agonist decreased cell death, neuroinflammation, and S100B levels, and increased BDNF release. Conclusions: Our results indicate that the kallikrein–kinin system plays a beneficial role in Alzheimer’s disease through B2R activation. The use of B2R agonists could, therefore, be a possible therapeutic option for patients diagnosed with Alzheimer’s disease.


2020 ◽  
Vol 10 (7) ◽  
pp. 438
Author(s):  
Laxmikant S. Deshpande ◽  
Robert J. DeLorenzo ◽  
Severn B. Churn ◽  
J. Travis Parsons

Loss of intracellular calcium homeostasis is an established mechanism associated with neuronal dysfunction and status epilepticus. Sequestration of free cytosolic calcium into endoplasmic reticulum by Mg2+/Ca2+ adenosinetriphosphatase (ATPase) is critical for maintenance of intracellular calcium homeostasis. Exposing hippocampal cultures to low-magnesium media is a well-accepted in vitro model of status epilepticus. Using this model, it was shown that endoplasmic reticulum Ca2+ uptake was significantly inhibited in homogenates from cultures demonstrating electrophysiological seizure phenotypes. Calcium uptake was mainly neuronal. However, glial Ca2+ uptake was also significantly inhibited. Viability of neurons exposed to low magnesium was similar to neurons exposed to control solutions. Finally, it was demonstrated that Ca2+ uptake inhibition and intracellular free Ca2+ levels increased in parallel with increasing incubation in low magnesium. The results suggest that inhibition of Mg2+/Ca2+ ATPase-mediated endoplasmic reticulum Ca2+ sequestration contributes to loss of intracellular Ca2+ homeostasis associated with status epilepticus. This study describes for the first time inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase in a mixed primary hippocampal model of status epilepticus. In combination with animal models of status epilepticus, the cell culture model provides a powerful tool to further elucidate mechanisms that result in inhibition of Mg2+/Ca2+ ATPase and downstream consequences of decreased enzyme activity.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1225-1225
Author(s):  
Huanbiao Mo ◽  
Wei Wei ◽  
Sophie Yount ◽  
Zachary Allen ◽  
Katherine Bechdol ◽  
...  

Abstract Objectives A common feature of aging and several neurological diseases including Alzheimer's disease is the downregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which results in a decrease in excitatory neurotransmission. Tocotrienols, vitamin E with an isoprenoid side chain, have been shown to suppress inflammation and the prenylation of proteins that regulate neuronal functions. Accumulating evidence suggests that tocotrienols may promote cognitive improvement in hippocampal-dependent learning tasks. We hypothesized that tocotrienols could promote cognitive improvement via increasing excitatory synaptic transmission. Methods To test our hypothesis, we measured surface levels of GluA1 in cultured primary hippocampal neurons from postnatal mice treated with 1 μmol/L δ-tocotrienol using an on-cell western blot. Aβ40 and Aβ42 secreted in the media were quantified using an ELISA-based assay. Alterations in excitatory synaptic transmission induced by δ-tocotrienol were confirmed by performing whole cell voltage patch clamp recordings of spontaneous excitatory postsynaptic currents (sEPSC) in primary cultured hippocampal neurons. Results Surface GluA1 was increased after 24 hours of treatment with 1 μmol/L δ-tocotrienol. δ-Tocotrienol (1 μmol/L) also significantly decreased the level of Aβ40 and Aβ42 in hippocampal culture media. Moreover, a significant increase was observed in sEPSC amplitudes but not sEPSC frequency in neurons treated with δ-tocotrienol. Conclusions δ-Tocotrienol promotes cognitive improvement via increases in AMPA receptor mediated neurotransmission and may be beneficial in restoring early stage excitatory synaptic dysfunction in aging and neurological disease. Funding Sources American River Nutrition Inc. and the Whitehall Foundation (Grant 2017–05-35).


Sign in / Sign up

Export Citation Format

Share Document