Anti-inflammatory and anti-fibrotic activity of TERN-201, a semicarbazide-sensitive amine oxidase inhibitor, in a rat choline-deficient high-fat diet non-alcoholic steatohepatitis model

2020 ◽  
Vol 73 ◽  
pp. S668
Author(s):  
Kevin Klucher ◽  
Christopher Jones ◽  
Zhou Zhou ◽  
Martijn Fenaux
2019 ◽  
Vol 97 (7) ◽  
pp. 611-622 ◽  
Author(s):  
Mohammed M. Heikal ◽  
Ahmed A. Shaaban ◽  
Wagdi F. Elkashef ◽  
Tarek M. Ibrahim

Febuxostat, a highly potent xanthine oxidase inhibitor with an antioxidant effect, inhibits elevated xanthine oxidase, leading to reduction of reactive oxygen species and oxidative stress, the main causes of vascular inflammation in hyperlipidemia. The aim of this study was to test the potential antioxidant and anti-inflammatory effects of febuxostat and (or) stopping a high-fat diet on the biochemical parameters in rabbits with hyperlipidemia induced by a high-fat diet. Male New Zealand rabbits were distributed into 3 groups: a normal control group fed standard chow for 12 weeks and 2 other groups fed a high-fat diet with 1% cholesterol for 8 weeks, and then shifted to standard chow for 4 weeks. During the last 4 weeks, one high-fat diet group received 0.5% carboxymethyl cellulose, whereas the other group was treated with febuxostat (2 mg/kg per day p.o.). Febuxostat significantly lowered low-density lipoprotein cholesterol (“bad” cholesterol) compared to the untreated group (high-fat diet group). Febuxostat also displayed a potent anti-inflammatory and antioxidant activity by decreasing serum levels of lipid peroxidation index, proinflammatory cytokines, and enhancing antioxidant enzyme activity. Stopping the hyperlipidemic diet in the high-fat diet group did not show improvement. These findings indicate the antioxidant and anti-inflammatory effects of febuxostat that may be common mechanisms of the anti-hyperlipidemic effect of this drug. Stopping a hyperlipidemic diet without treatment is not sufficient once injury has occurred.


2014 ◽  
Vol 10 ◽  
pp. 169-177 ◽  
Author(s):  
Sunyoon Jung ◽  
Mak-Soon Lee ◽  
Yoonjin Shin ◽  
Chong-Tai Kim ◽  
In-Hwan Kim ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 5 ◽  
Author(s):  
Venkata J Adapala ◽  
Kimberly K Buhman ◽  
Kolapo M Ajuwon

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mi-Bo Kim ◽  
Changhee Kim ◽  
Youngwoo Song ◽  
Jae-Kwan Hwang

Xanthorrhizol, a natural compound isolated fromCurcuma xanthorrhizaRoxb. (Java turmeric), has been reported to possess antioxidant and anticancer properties; however, its effects on metabolic disorders remain unknown. The aim of the present study was to evaluate the effects of xanthorrhizol (XAN) andC. xanthorrhizaextract (CXE) with standardized XAN on hyperglycemia and inflammatory markers in high-fat diet- (HFD-) induced obese mice. Treatment with XAN (10 or 25 mg/kg/day) or CXE (50 or 100 mg/kg/day) significantly decreased fasting and postprandial blood glucose levels in HFD-induced obese mice. XAN and CXE treatments also lowered insulin, glucose, free fatty acid (FFA), and triglyceride (TG) levels in serum. Epididymal fat pad and adipocyte size were decreased by high doses of XAN (26.6% and 20.1%) and CXE (25.8% and 22.5%), respectively. XAN and CXE treatment also suppressed the development of fatty liver by decreasing liver fat accumulation. Moreover, XAN and CXE significantly inhibited production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β(IL-1β), and C-reactive protein (CRP) in adipose tissue (27.8–82.7%), liver (43.9–84.7%), and muscle (65.2–92.5%). Overall, these results suggest that XAN and CXE, with their antihyperglycemic and anti-inflammatory activities, might be used as potent antidiabetic agents for the treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document