Identification of NFI-binding sites and cloning of NFI-cDNAs suggest a regulatory role for NFI transcription factors in olfactory neuron gene expression

1999 ◽  
Vol 72 (1) ◽  
pp. 65-79 ◽  
Author(s):  
Hans Baumeister ◽  
Richard M. Gronostajski ◽  
Gary E. Lyons ◽  
Frank L. Margolis
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 719-719 ◽  
Author(s):  
Jacqueline E. Payton ◽  
Nicole R. Grieselhuber ◽  
Li-Wei Chang ◽  
Mark A. Murakami ◽  
Wenlin Yuan ◽  
...  

Abstract In order to better understand the pathogenesis of acute promyelocytic leukemia (APL, FAB M3), we sought to determine its gene expression signature by comparing the expression profiles of 14 APL samples to that of other AML subtypes (M0, M1, M2, M4, n=62) and to fractionated normal whole bone marrow cells (CD34 cells, promyelocytes, PMNs, n=5 each). We used ANOVA and SAM (Significance Analysis of Microarrays) to select genes that were highly expressed in APL cells and that displayed low to no expression in other AML subtypes. The APL signature was then further refined by filtering genes whose expression in APL was not significantly different from that of normal promyelocytes, yielding 1121 annotated genes that reliably distinguish APL from the other FAB subtypes using unsupervised hierarchical clustering, both in training and validation datasets. Fold change differences in expression between M3 and other AML FAB classes were striking, for example: GABRE 35.4, HGF 21.3, ANXA8 21.3, PTPRG 16.9, PTGDS 12.1, PPARG 11.1, STAB1 9.8. A large proportion of the APL versus other FAB dysregulome was recapitulated when we compared APL expression to that of the normal pattern of myeloid development. We identified 733 annotated genes with significantly different expression in APL versus normal myeloid cell fractions. These dysregulated genes were assigned to 4 classes: persistently expressed CD34 cell-specific genes, repressed promyelocyte-specific genes, prematurely expressed neutrophil-specific genes and genes with high expression in APL and low/no expression in normal myeloid cell fractions. Expression differences in several of the most dysregulated genes were validated by qRT-PCR. We then examined the expression of the APL signature genes in myeloid cell lines and tumors from a murine APL model. The bona fide M3 signature was not apparent in resting NB4 cells (which contain t(15;17), and which express PML-RARA), nor in PR-9 cells following Zn induction of PML-RARA expression, suggesting that neither cell line accurately models the gene expression signature of primary APL cells. Most of the nodal genes of the mCG-PML-RARA murine APL dysregulome (Yuan, et al, 2007) are similarly dysregulated in human M3 cells; however, the human and mouse dysregulomes do not completely coincide. Finally, we have begun investigating which APL signature genes are direct transcriptional targets of PML-RARA. The promoters of the APL signature genes were analyzed for the presence of known PML-RARA binding sites using multiple computational methods. The analyses demonstrated that several transcription factors (EBF3, TWIST1, SIX3, PPARG) have putative retinoic acid response elements (RAREs) in their upstream regulatory regions. Additionally, we examined the promoters of some of the most upregulated genes (HGF, PTGDS, STAB1) for known consensus sites of these transcription factors, and found that all have putative binding sites for at least one. These results suggest that PML-RARA may initiate a transcriptional cascade that relies not only on its own activity, but also on the actions of downstream transcription factors. In summary, our studies indicate that primary APL cells have a gene expression signature that is consistent and highly reproducible, but different from commonly used human APL cell lines and a mouse model of APL. The molecular mechanisms that govern this unique signature are currently under investigation.


2007 ◽  
Vol 4 (2) ◽  
pp. 1-23
Author(s):  
Amitava Karmaker ◽  
Kihoon Yoon ◽  
Mark Doderer ◽  
Russell Kruzelock ◽  
Stephen Kwek

Summary Revealing the complex interaction between trans- and cis-regulatory elements and identifying these potential binding sites are fundamental problems in understanding gene expression. The progresses in ChIP-chip technology facilitate identifying DNA sequences that are recognized by a specific transcription factor. However, protein-DNA binding is a necessary, but not sufficient, condition for transcription regulation. We need to demonstrate that their gene expression levels are correlated to further confirm regulatory relationship. Here, instead of using a linear correlation coefficient, we used a non-linear function that seems to better capture possible regulatory relationships. By analyzing tissue-specific gene expression profiles of human and mouse, we delineate a list of pairs of transcription factor and gene with highly correlated expression levels, which may have regulatory relationships. Using two closely-related species (human and mouse), we perform comparative genome analysis to cross-validate the quality of our prediction. Our findings are confirmed by matching publicly available TFBS databases (like TRANFAC and ConSite) and by reviewing biological literature. For example, according to our analysis, 80% and 85.71% of the targets genes associated with E2F5 and RELB transcription factors have the corresponding known binding sites. We also substantiated our results on some oncogenes with the biomedical literature. Moreover, we performed further analysis on them and found that BCR and DEK may be regulated by some common transcription factors. Similar results for BTG1, FCGR2B and LCK genes were also reported.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Julia C. van Kessel ◽  
Luke E. Ulrich ◽  
Igor B. Zhulin ◽  
Bonnie L. Bassler

ABSTRACT LuxR-type transcription factors are the master regulators of quorum sensing in vibrios. LuxR proteins are unique members of the TetR superfamily of transcription factors because they activate and repress large regulons of genes. Here, we used chromatin immunoprecipitation and nucleotide sequencing (ChIP-seq) to identify LuxR binding sites in the Vibrio harveyi genome. Bioinformatics analyses showed that the LuxR consensus binding site at repressed promoters is a symmetric palindrome, whereas at activated promoters it is asymmetric and contains only half of the palindrome. Using a genetic screen, we isolated LuxR mutants that separated activation and repression functions at representative promoters. These LuxR mutants exhibit sequence-specific DNA binding defects that restrict activation or repression activity to subsets of target promoters. Altering the LuxR DNA binding site sequence to one more closely resembling the ideal LuxR consensus motif can restore in vivo function to a LuxR mutant. This study provides a mechanistic understanding of how a single protein can recognize a variety of binding sites to differentially regulate gene expression. IMPORTANCE Bacteria use the cell-cell communication process called quorum sensing to regulate collective behaviors. In vibrios, LuxR-type transcription factors control the quorum-sensing gene expression cascade. LuxR-type proteins are structural homologs of TetR-type transcription factors. LuxR proteins were assumed to function analogously to TetR proteins, which typically bind to a single conserved binding site to repress transcription of one or two genes. We find here that unlike TetR proteins, LuxR acts a global regulator, directly binding upstream of and controlling more than 100 genes. Again unlike TetR, LuxR functions as both an activator and a repressor, and these two activities can be separated by mutagenesis. Finally, the consensus binding motifs driving LuxR-activated and -repressed genes are distinct. This work shows that LuxR, although structurally similar to TetR, has evolved unique features enabling it to differentially control a large regulon of genes in response to quorum-sensing cues.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2931-2931
Author(s):  
Xia Liu ◽  
Jiaji G Chen ◽  
Jie Chen ◽  
Lian Xu ◽  
Nicholas Tsakmaklis ◽  
...  

Abstract Hematopoietic cell kinase (HCK) is a member of the SRC family of tyrosine kinases (SFKs). HCK transcription is aberrantly upregulated in Waldenström's Macroglobulinemia (WM) and Activated B-cell (ABC) subtype Diffuse Large B-cell Lymphoma (DLBCL) in response to activating mutations in MYD88 (Yang et al, Blood 2016). To clarify the mechanism responsible for the aberrant upregulation of HCK transcription inMYD88 mutated cells, we analyzed the promoter sequence of HCK using PROMO and identified consensus binding sites for transcription factors (AP1, NF-kB, STAT3, and IRF1) that are regulated by mutated MYD88 (Ngo et al, Nature 2011; Treon et al, NEJM 2012; Yang et al, Blood 2013; Juilland et al, Blood 2016; Yang et al, Blood 2016). We performed Chromatin Immuno-precipitation (ChIP) assays using ChIP grade antibodies to JunB, c-Jun, NF-kB-p65, STAT3 and IRF1 in MYD88 mutated WM (BCWM.1, MWCL-1) and ABC DLBCL (TMD-8, HBL-1, OCI-Ly3) cells that highly express HCK transcripts, as well as wild type MYD88 expressing GCB DLBCL (OCI-Ly7, OCI-Ly19) cells that show low HCK transcription. Following ChIP, a HCK promoter specific quantitative PCR assay was used to detect HCK promoter sequences. These studies showed that JunB, NF-kB-p65 and STAT3 bound more robustly to the HCK promoter in MYD88 mutated WM and ABC-DLBCL cells versus MYD88 wild type GCB DLBCL cell lines, while c-Jun bound more abundantly to the HCK promoter sequence in all DLBCL cell lines, regardless of MYD88 mutation status. In contrast c-Jun binding was low in MYD88 mutated WM cells. IRF1 binding to the HCK promoter was similar in all cell lines, regardless of the MYD88 mutation status. To further investigate HCK regulation, we developed an HCK promoter driven luciferase reporter vector (WT) with mutated AP-1 binding (AP1-mu-1~6), NF-kB binding (NF-kB-mu-1~5), and STAT3 binding (STAT3-mu) sites and investigated their impact on HCK promoter activity in MYD88 mutated BCWM.1 cells. We observed that mutation of AP1-mu-1,4,5,6; NF-kB-mu-1,4,5, as well as STAT3-mu binding sites greatly reduced HCK promoter activity, thereby supporting a role for AP-1, NF-kB and STAT3 transcription factors in HCK gene expression in MYD88 mutated cells. To further clarify the importance of these transcription factors in aberrant HCK gene expression in MYD88 mutated cells, we treated BCWM.1, MWCL-1, TMD-8 and HBL-1 cells with the AP-1 inhibitor SR 11302; NF-kB inhibitor QNZ; and the STAT3 inhibitor STA-21. Treatment of cells for 2 hours with SR 11302, QNZ, and STA-21 at sub-EC50 concentrations resulted in decreased HCK expression in MYD88 mutated all cell lines. Lastly, we investigated the contribution of BCR signaling to HCK transcription. BCWM.1, MWCL-1, TMD-8, and HBL-1 cells were treated with the Syk kinase inhibitor R406, and HCK transcription levels were then assessed. Differences in HCK expression were observed between MYD88 mutated WM and ABC DLBCL cells following R406, supporting a contributing role for BCR signaling in ABC DLBCL but not WM cells to HCK expression. Our data provide critical new insights into HCK regulation, and a framework for targeting pro-survival HCK signaling in WM and ABC DLBCL cells dependent on activating MYD88 mutations. Disclosures Castillo: Biogen: Consultancy; Otsuka: Consultancy; Millennium: Research Funding; Janssen: Honoraria; Abbvie: Research Funding; Pharmacyclics: Honoraria. Treon:Janssen: Consultancy; Pharmacyclics: Consultancy, Research Funding.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 344
Author(s):  
Mahmoud Ahmed ◽  
Deok Ryong Kim

Researchers use ChIP binding data to identify potential transcription factor binding sites. Similarly, they use gene expression data from sequencing or microarrays to quantify the effect of the factor overexpression or knockdown on its targets. Therefore, the integration of the binding and expression data can be used to improve the understanding of a transcription factor function. Here, we implemented the binding and expression target analysis (BETA) in an R/Bioconductor package. This algorithm ranks the targets based on the distances of their assigned peaks from the factor ChIP experiment and the signed statistics from gene expression profiling with factor perturbation. We further extend BETA to integrate two sets of data from two factors to predict their targets and their combined functions. In this article, we briefly describe the workings of the algorithm and provide a workflow with a real dataset for using it. The gene targets and the aggregate functions of transcription factors YY1 and YY2 in HeLa cells were identified. Using the same datasets, we identified the shared targets of the two factors, which were found to be, on average, more cooperatively regulated.


2000 ◽  
Vol 182 (23) ◽  
pp. 6584-6591 ◽  
Author(s):  
Thomas S. Cunningham ◽  
Rajendra Rai ◽  
Terrance G. Cooper

ABSTRACT Nitrogen-catabolic gene expression in Saccharomyces cerevisiae is regulated by the action of four GATA family transcription factors: Gln3p and Gat1p/Nil1p are transcriptional activators, and Dal80 and Deh1p/Gzf3p are repressors. In addition to the GATA sequences situated upstream of all nitrogen catabolite repression-sensitive genes that encode enzyme and transport proteins, the promoters of the GAT1, DAL80, andDEH1 genes all contain multiple GATA sequences as well. These GATA sequences are the binding sites of the GATA family transcription factors and are hypothesized to mediate their autogenous and cross regulation. Here we show, using DAL80 fused to the carbon-regulated GAL1,10 or copper-regulated CUP1 promoter, that GAT1expression is inversely regulated by the level of DAL80expression, i.e., as DAL80 expression increases,GAT1 expression decreases. The amount of DAL80expression also dictates the level at which DAL3, a gene activated almost exclusively by Gln3p, is transcribed. Gat1p was found to partially substitute for Gln3p in transcription. These data support the contention that regulation of GATA-factor gene expression is tightly and dynamically coupled. Finally, we suggest that the complicated regulatory circuit in which the GATA family transcription factors participate is probably most beneficial as cells make the transition from excess to limited nitrogen availability.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4387-4397
Author(s):  
Fiona C. Wardle ◽  
Daniel H. Wainstock ◽  
Hazel L. Sive

The cement gland marks the extreme anterior ectoderm of the Xenopus embryo, and is determined through the overlap of several positional domains. In order to understand how these positional cues activate cement gland differentiation, the promoter of Xag1, a marker of cement gland differentiation, was analyzed. Previous studies have shown that Xag1 expression can be activated by the anterior-specific transcription factor Otx2, but that this activation is indirect. 102 bp of upstream genomic Xag1 sequence restricts reporter gene expression specifically to the cement gland. Within this region, putative binding sites for Ets and ATF/CREB transcription factors are both necessary and sufficient to drive cement gland-specific expression, and cooperate to do so. Furthermore, while the putative ATF/CREB factor is activated by Otx2, a factor acting through the putative Ets-binding site is not. These results suggest that Ets-like and ATF/CREB-like family members play a role in regulating Xag1 expression in the cement gland, through integration of Otx2 dependent and independent pathways.


Sign in / Sign up

Export Citation Format

Share Document