147 Characterisation of platelet aggregation induced by the human carcinosarcoma Colo 526: Role of platelet activation, tumor cell cytoskeleton and tumor cell plasma membrane

1996 ◽  
Vol 10 ◽  
pp. 44
Methods ◽  
1997 ◽  
Vol 12 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Matthew F Mescher ◽  
Elena Savelieva

2015 ◽  
Vol 89 (18) ◽  
pp. 9440-9453 ◽  
Author(s):  
Emmanuel Adu-Gyamfi ◽  
Kristen A. Johnson ◽  
Mark E. Fraser ◽  
Jordan L. Scott ◽  
Smita P. Soni ◽  
...  

ABSTRACTLipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles.IMPORTANCEThe lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry.


1997 ◽  
Vol 119 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Mustapha Zerouga ◽  
Laura J. Jenski ◽  
Scott Booster ◽  
William Stillwell

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1141-1141
Author(s):  
Satish Babu Cheepala ◽  
Kazumasa Takenaka ◽  
Tamara I. Pestina ◽  
Carl W. Jackson ◽  
Schuetz John

Abstract Abstract 1141 Cyclic nucleotides have an important role in platelet aggregation and the role of phosphodiesterases in regulating their concentration is well known. Currently it is unknown if plasma membrane cyclic nucleotide export proteins regulate cyclic nucleotide concentrations in platelets. The ATP-binding cassette transporter, ABCC4 functions as a cyclic nucleotide exporter that is highly expressed in platelets. However, its role as a cyclic nucleotide transporter in platelets is unknown, because it was reportedly localized intracellularly in the platelet dense granules. This original report (Jedlitschky, Tirschmann et al. 2004) evaluated ABCC4 localization by immune-fluorescence of platelets after attachment to collagen coated coverslips. However, collagen attachment activates platelets causing mobilization and fusion of alpha and dense granules to the plasma membrane, thus rendering conditions that distinguish between plasma membrane and dense granules almost impossible. To resolve this problem we isolated the platelets under conditions that minimize activation during isolation. Subsequently, these platelets membranes were labeled with the cell impermeable biotinylating agent (EZ-Link Sulfo-NHS-LC-LC Biotin). Analysis of total platelet lysate detected the dense granule marker, P-selectin and Abcc4. However, after precipitation of the plasma membrane with streptavidin-beads, we detected only Abcc4. This indicates Mrp4 is at the plasma membrane. We confirmed Abcc4 localization by confocal microscopy on platelets that were treated with a monoclonal antibody specific to Abcc4. Evidence that Abcc4 regulates cyclic nucleotide levels under basal conditions was then provided by the findings that Abcc4-null platelets have elevated cyclic nucleotides. We further used the Abcc4-null mouse model to explore the role of Abcc4 in platelet biology. The Abcc4-null mouse does not have any change in the platelet or dense granules number compared to the wild type mouse. Platelet activation in vivo can be initiated by interaction with collagen through the GPVI receptor that is expressed at the plasma membrane of the platelets. At the molecular level, the initiation of platelet activation by collagen results in an increase in the cyclic nucleotide concentration and phosphorylation of vasodilator-stimulated phosphoprotein (VASP) which can attenuate aggregation. To determine the Abcc4 role in this process we exposed Abcc4-null platelets to collagen and discovered that these platelets have impaired activation in response to collagen. However, Abcc4-null platelets activated by thrombin or ADP, which activate either G-coupled PAR receptors or P2Y12 receptor respectively, show an aggregation profile almost identical to wildtype platelets, thus indicating the defect in Abcc4-null platelet aggregation is specific to the collagen initiated pathway. To understand the basis for the impaired aggregation of Abcc4-null platelets, we examined VASP phosphorylation after collagen treatment, and discovered that the cyclic nucleotide dependent phosphorylation of VASP (Ser 157) is elevated in the Abcc4-null platelets. These results strongly suggest that Abcc4-null platelets have impaired GPVI activation by collagen due to elevated cyclic nucleotide concentrations. Based on these studies we conclude that Abcc4 plays a critical role in regulating platelet cyclic nucleotide concentrations and its absence or perhaps inhibition (by drugs) impairs the aggregation response to collagen. Because many antiplatelet drugs are potent inhibitors of Abcc4 (e.g., Dipyridamole and Sildenafil) these findings have strong implications for not just the development of antiplatelet drugs, but also for understanding the role of Abcc4 in regulating intracellular nucleotide levels. Jedlitschky, G., K. Tirschmann, et al. (2004). “The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage.” Blood 104(12): 3603–10. This work was supported by NIH and by the American Lebanese Syrian Associated Charities (ALSAC). Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Author(s):  
Gabrielle E Brown ◽  
Leslie S. Ritter ◽  
Paul F. McDonagh ◽  
Zoe Cohen

Platelets expose phosphatidylserine (PS), a component of the prothrombinase complex, on the outer surface of the plasma membrane when activated. [ref 1] The prothrombinase complex catalyzes the conversion of prothrombin to thrombin, and it has been demonstrated that an increase in PS exposure is correlated with an increase in thrombin generation by platelets. [refs 2,3] Similarly, erythrocyte (RBC) activation, or eryptosis, is also characterized by PS exposure on the plasma membrane. [ref 4] Although PS exposure on RBCs is considered a signal for splenic macrophage destruction, eryptosis may allow RBCs to contribute to thrombosis.[ref 4] The aims of this study were to determine whether the addition of RBCs to platelets increased functional platelet aggregation and coagulation properties. A ratio of 4 RBCs to 1 platelet (4:1) was evaluated for aggregation and coagulation compared to platelet control. Platelet aggregation and coagulation properties were evaluated with impedance aggregometry and thromboelastography, respectively. The 4:1 experimental group had significant increases in aggregation and coagulation relative to the platelet control. These results indicate that RBCs increase platelet aggregation and coagulation properties. This suggests that RBCs play a role in diseases traditionally thought of as associated solely via dysregulated platelet activation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1063-1063
Author(s):  
Satish B. Cheepala ◽  
Kazumasa Takenaka ◽  
Tamara I. Pestina ◽  
Carl W. Jackson ◽  
John D. Schuetz

Abstract Abstract 1063 Platelet activation is a highly regulated process, and cyclic nucleotide mediated signaling pathways are crucial to effective platelet activation. Vascular injury produces, exposed collagen which binds circulating platelets through the platelet's “collagen” receptor, GPVI, resulting in the activation of guanyly/adenlyl cyclases. These interactions result in the rapid alterations in the cyclic nucleotide concentration inside the platelets leading to activation of protein kinase A and G signaling pathways to modulate platelet function. While, ABCC4 functions as a plasma membrane transporter for cyclic nucleotides its contribution to platelet activation has been obscured because it was reportedly as primarily intracellular in the platelets dense granules. This original report (Jedlitschky, Tirschmann et al. 2004) evaluated ABCC4 localization by immune-fluorescence of platelets attached to collagen coated coverslips. However, attachment via collagen produces platelet activation leading to mobilization and fusion of alpha and dense granules to the plasma membrane, thus under these conditions distinguishing between plasma membrane and dense granules is not possible. We resolved this problem by labeling quiescent platelets with a cell impermeable biotinylating agent (EZ-Link Sulfo-NHS-LC-LC Biotin). Isolation of membrane and internal fraction demonstrated that of over ninety percent of Abcc4 localizes to the plasma membrane. Furthermore, confocal microscopy of platelets stained with specific antibodies against Abcc4 confirmed Abcc4 localization to the plasma membrane. We extended these studies to the Abcc4- knockout (KO) mouse model. The Abcc4- KO mouse does not have any change in the number of platelet or dense granules compared to the wild type mouse. Platelet activation in vivo can be initiated by interaction with collagen through the GPVI receptor that is expressed at the plasma membrane of the platelets. At the molecular level, the initiation of platelet activation by collagen results in an increase in the cyclic nucleotide concentration leading to activation of signaling cascade through protein kinase A or G. Expose of Abcc4-KO platelets to collagen and revealed impaired activation in response to collagen. However, Abcc4-KO platelets activated by either thrombin or ADP (which activate either G-coupled PAR receptors or P2Y12 receptor respectively) shows an aggregation profile almost identical to wildtype platelets, thus indicating the defect in Abcc4 -KO platelet aggregation is specific to the collagen pathway. To understand the basis for the impaired collagen aggregation of Abcc4-KO platelets, we investigated the collagen receptor (GPVI) signaling pathway in Abcc4-KO platelets. Interestingly, in the Abcc4-KO platelets after the platelet activation with collagen, cyclic nucleotide dependent phosphorylation of VASP through protein kinase A or G at Ser-157 or Ser-239 respectively is reduced compared to the wildtype. Notably, Abcc4-KO platelets had reduced GPVI surface expression that correlated with the reduced phosphorylation of VASP after collagen stimulation. The similar, protein levels of Syk and Plcg2, (downstream signaling molecules of GPVI signaling pathway), in the Abcc4 wildtype and KO platelets implies that GPVI expression is the primary defect in Abcc4 deficiency. These results suggest that Abcc4 plays a crucial role in regulating cyclic nucleotides in response to GPVI activation by collagen. These findings suggest ABCC4/Mrp4 loss of function or inhibition (by drugs) may disrupt platelet aggregation under conditions of vascular injury. As, many antiplatelet drugs are potent inhibitors of Abcc4 (e.g., Dipyridamole and Sildenafil) these conclusions have strong implications for not just the development of antiplatelet drugs, but also for further exploring the role of Abcc4 in regulating intracellular nucleotide levels and platelet biology. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document