The Abcc4 Knockout Reveals An Important Role for Abcc4 in Platelet Aggregation

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1141-1141
Author(s):  
Satish Babu Cheepala ◽  
Kazumasa Takenaka ◽  
Tamara I. Pestina ◽  
Carl W. Jackson ◽  
Schuetz John

Abstract Abstract 1141 Cyclic nucleotides have an important role in platelet aggregation and the role of phosphodiesterases in regulating their concentration is well known. Currently it is unknown if plasma membrane cyclic nucleotide export proteins regulate cyclic nucleotide concentrations in platelets. The ATP-binding cassette transporter, ABCC4 functions as a cyclic nucleotide exporter that is highly expressed in platelets. However, its role as a cyclic nucleotide transporter in platelets is unknown, because it was reportedly localized intracellularly in the platelet dense granules. This original report (Jedlitschky, Tirschmann et al. 2004) evaluated ABCC4 localization by immune-fluorescence of platelets after attachment to collagen coated coverslips. However, collagen attachment activates platelets causing mobilization and fusion of alpha and dense granules to the plasma membrane, thus rendering conditions that distinguish between plasma membrane and dense granules almost impossible. To resolve this problem we isolated the platelets under conditions that minimize activation during isolation. Subsequently, these platelets membranes were labeled with the cell impermeable biotinylating agent (EZ-Link Sulfo-NHS-LC-LC Biotin). Analysis of total platelet lysate detected the dense granule marker, P-selectin and Abcc4. However, after precipitation of the plasma membrane with streptavidin-beads, we detected only Abcc4. This indicates Mrp4 is at the plasma membrane. We confirmed Abcc4 localization by confocal microscopy on platelets that were treated with a monoclonal antibody specific to Abcc4. Evidence that Abcc4 regulates cyclic nucleotide levels under basal conditions was then provided by the findings that Abcc4-null platelets have elevated cyclic nucleotides. We further used the Abcc4-null mouse model to explore the role of Abcc4 in platelet biology. The Abcc4-null mouse does not have any change in the platelet or dense granules number compared to the wild type mouse. Platelet activation in vivo can be initiated by interaction with collagen through the GPVI receptor that is expressed at the plasma membrane of the platelets. At the molecular level, the initiation of platelet activation by collagen results in an increase in the cyclic nucleotide concentration and phosphorylation of vasodilator-stimulated phosphoprotein (VASP) which can attenuate aggregation. To determine the Abcc4 role in this process we exposed Abcc4-null platelets to collagen and discovered that these platelets have impaired activation in response to collagen. However, Abcc4-null platelets activated by thrombin or ADP, which activate either G-coupled PAR receptors or P2Y12 receptor respectively, show an aggregation profile almost identical to wildtype platelets, thus indicating the defect in Abcc4-null platelet aggregation is specific to the collagen initiated pathway. To understand the basis for the impaired aggregation of Abcc4-null platelets, we examined VASP phosphorylation after collagen treatment, and discovered that the cyclic nucleotide dependent phosphorylation of VASP (Ser 157) is elevated in the Abcc4-null platelets. These results strongly suggest that Abcc4-null platelets have impaired GPVI activation by collagen due to elevated cyclic nucleotide concentrations. Based on these studies we conclude that Abcc4 plays a critical role in regulating platelet cyclic nucleotide concentrations and its absence or perhaps inhibition (by drugs) impairs the aggregation response to collagen. Because many antiplatelet drugs are potent inhibitors of Abcc4 (e.g., Dipyridamole and Sildenafil) these findings have strong implications for not just the development of antiplatelet drugs, but also for understanding the role of Abcc4 in regulating intracellular nucleotide levels. Jedlitschky, G., K. Tirschmann, et al. (2004). “The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage.” Blood 104(12): 3603–10. This work was supported by NIH and by the American Lebanese Syrian Associated Charities (ALSAC). Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1063-1063
Author(s):  
Satish B. Cheepala ◽  
Kazumasa Takenaka ◽  
Tamara I. Pestina ◽  
Carl W. Jackson ◽  
John D. Schuetz

Abstract Abstract 1063 Platelet activation is a highly regulated process, and cyclic nucleotide mediated signaling pathways are crucial to effective platelet activation. Vascular injury produces, exposed collagen which binds circulating platelets through the platelet's “collagen” receptor, GPVI, resulting in the activation of guanyly/adenlyl cyclases. These interactions result in the rapid alterations in the cyclic nucleotide concentration inside the platelets leading to activation of protein kinase A and G signaling pathways to modulate platelet function. While, ABCC4 functions as a plasma membrane transporter for cyclic nucleotides its contribution to platelet activation has been obscured because it was reportedly as primarily intracellular in the platelets dense granules. This original report (Jedlitschky, Tirschmann et al. 2004) evaluated ABCC4 localization by immune-fluorescence of platelets attached to collagen coated coverslips. However, attachment via collagen produces platelet activation leading to mobilization and fusion of alpha and dense granules to the plasma membrane, thus under these conditions distinguishing between plasma membrane and dense granules is not possible. We resolved this problem by labeling quiescent platelets with a cell impermeable biotinylating agent (EZ-Link Sulfo-NHS-LC-LC Biotin). Isolation of membrane and internal fraction demonstrated that of over ninety percent of Abcc4 localizes to the plasma membrane. Furthermore, confocal microscopy of platelets stained with specific antibodies against Abcc4 confirmed Abcc4 localization to the plasma membrane. We extended these studies to the Abcc4- knockout (KO) mouse model. The Abcc4- KO mouse does not have any change in the number of platelet or dense granules compared to the wild type mouse. Platelet activation in vivo can be initiated by interaction with collagen through the GPVI receptor that is expressed at the plasma membrane of the platelets. At the molecular level, the initiation of platelet activation by collagen results in an increase in the cyclic nucleotide concentration leading to activation of signaling cascade through protein kinase A or G. Expose of Abcc4-KO platelets to collagen and revealed impaired activation in response to collagen. However, Abcc4-KO platelets activated by either thrombin or ADP (which activate either G-coupled PAR receptors or P2Y12 receptor respectively) shows an aggregation profile almost identical to wildtype platelets, thus indicating the defect in Abcc4 -KO platelet aggregation is specific to the collagen pathway. To understand the basis for the impaired collagen aggregation of Abcc4-KO platelets, we investigated the collagen receptor (GPVI) signaling pathway in Abcc4-KO platelets. Interestingly, in the Abcc4-KO platelets after the platelet activation with collagen, cyclic nucleotide dependent phosphorylation of VASP through protein kinase A or G at Ser-157 or Ser-239 respectively is reduced compared to the wildtype. Notably, Abcc4-KO platelets had reduced GPVI surface expression that correlated with the reduced phosphorylation of VASP after collagen stimulation. The similar, protein levels of Syk and Plcg2, (downstream signaling molecules of GPVI signaling pathway), in the Abcc4 wildtype and KO platelets implies that GPVI expression is the primary defect in Abcc4 deficiency. These results suggest that Abcc4 plays a crucial role in regulating cyclic nucleotides in response to GPVI activation by collagen. These findings suggest ABCC4/Mrp4 loss of function or inhibition (by drugs) may disrupt platelet aggregation under conditions of vascular injury. As, many antiplatelet drugs are potent inhibitors of Abcc4 (e.g., Dipyridamole and Sildenafil) these conclusions have strong implications for not just the development of antiplatelet drugs, but also for further exploring the role of Abcc4 in regulating intracellular nucleotide levels and platelet biology. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 98 (4) ◽  
pp. 1414-1419 ◽  
Author(s):  
Antonino Coppola ◽  
Ludovico Coppola ◽  
Liliana dalla Mora ◽  
Francesco M. Limongelli ◽  
Antonio Grassia ◽  
...  

CD39/ATP diphosphohydrolase is expressed on B lymphocytes, cytotoxic T lymphocytes, monocytes, platelets, and endothelial cells, and it has a critical role in the inhibition of platelet responsiveness. To determine whether strenuous exercise could acutely change expression of CD39 in platelets and lymphocytes, eight healthy sedentary men, 34 yr old (SD 7), and eight physically active men, 34 yr old (SD 6), performed graded upright cycle ergometry to volitional exhaustion. Blood samples collected both at baseline and after exercise test were employed to measure CD39 expression in platelets and lymphocytes. The percentage of circulating platelet-platelet aggregates, the “in vitro” ADP and collagen-induced platelet aggregation, and the expression of both platelet glycoprotein IIb-IIIa (PAC-1) and P-selectin (CD62) were also considered markers of platelet activation. After strenuous exercise, all subjects demonstrated significant platelet activation as judged by the increased percentage of platelet-platelet aggregates. The in vitro ADP-induced platelet aggregation and the expression of CD62P on ADP-stimulated platelets significantly increased in sedentary but not in active subjects. After exercise, all of the subjects showed a significant reduction of CD39 expression in platelet [sedentary: from 2.2 (SD 0.8) to 1.1% (SD 0.8), P = 0.008; active: from 0.6 (SD 0.2) to 0.35% (SD 0.1), P = 0.009] and an increase of CD39 expression in B lymphocytes [sedentary: from 47 (SD 13) to 60% (SD 11), P = 0.0039; active: from 46 (SD 11) to 59% (SD 11), P = 0.0038]. Taken together, these findings confirm the critical role of this ADPase in inhibition of platelet responsiveness, also suggesting a possible role of B lymphocytes in thromboregulation mechanism.


2014 ◽  
Author(s):  
Gabrielle E Brown ◽  
Leslie S. Ritter ◽  
Paul F. McDonagh ◽  
Zoe Cohen

Platelets expose phosphatidylserine (PS), a component of the prothrombinase complex, on the outer surface of the plasma membrane when activated. [ref 1] The prothrombinase complex catalyzes the conversion of prothrombin to thrombin, and it has been demonstrated that an increase in PS exposure is correlated with an increase in thrombin generation by platelets. [refs 2,3] Similarly, erythrocyte (RBC) activation, or eryptosis, is also characterized by PS exposure on the plasma membrane. [ref 4] Although PS exposure on RBCs is considered a signal for splenic macrophage destruction, eryptosis may allow RBCs to contribute to thrombosis.[ref 4] The aims of this study were to determine whether the addition of RBCs to platelets increased functional platelet aggregation and coagulation properties. A ratio of 4 RBCs to 1 platelet (4:1) was evaluated for aggregation and coagulation compared to platelet control. Platelet aggregation and coagulation properties were evaluated with impedance aggregometry and thromboelastography, respectively. The 4:1 experimental group had significant increases in aggregation and coagulation relative to the platelet control. These results indicate that RBCs increase platelet aggregation and coagulation properties. This suggests that RBCs play a role in diseases traditionally thought of as associated solely via dysregulated platelet activation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3626-3626
Author(s):  
Michelle Castillo ◽  
Emily Ott ◽  
Robert Wujek ◽  
Liu Qiuli ◽  
Kathleen Schmainda ◽  
...  

Introduction: Genetic deletion of Tissue Factor Pathway Inhibitor (TFPI) exon 4, encoding its Kunitz 1 (K1) domain, results in complete intrauterine lethality (PMID 9242522). TFPI K1 null mice (Tfpi-/-) are born live if Tissue Factor expression is reduced or in the complete absence of Protease Activated Receptor-4 (Par4), and these exhibit a normal life span without overt signs of thrombosis (PMID 15598816, 25954015). Based on these data, it has been postulated that modulation of thrombin-dependent platelet activation by TFPI is essential for survival. Platelet activation results in a number of downstream events. Of these, platelet aggregation via the integrin receptor αIIbβ3 is considered to have a key role in hemostasis and could participate in thrombotic pathology in the absence of TFPI. Binding of αIIbβ3 to its ligands also mediates critical interactions of platelets with endothelial cells, leukocytes and other cell types. In this work, we have investigated whether modulation of platelet activity via genetic absence of integrin receptor αIIbβ3 confers protection and allows generation of adult Tfpi-/- mice. Methods: Tfpi+/- αIIb-/- mice were generated by breeding Tfpi+/- and integrin αIIb-/- mice and identified by PCR-based genotyping of tissues obtained by tail biopsies. Tfpi+/- αIIb-/- intercrosses served as the experimental cross. Pups were genotyped at the time of wean, around 4 weeks of age. In some experiments, surgeries were performed to analyze pregnancies at 18.5 days post coitum (dpc). Embryos and placentae were observed under the dissecting microscope and any phenotypic abnormalities were noted. Presence of heart beats and limb movements were used to identify live embryos. Embryos and placentae were fixed in zinc-formalin and embedded in paraffin for sectioning and histological analysis. T1 weighted Magnetic Resonance Images were acquired on a 9.4T scanner to measure cerebral ventricle sizes of Tfpi-/- αIIb-/- and littermate control mice. Ventricular regions of interest (ROI) were drawn on each image slice from which total ventricular volume was computed. These mice were later perfused with 4% paraformaldehyde for collection of organs and histological analysis. Results: We analyzed 122 pups from intercrosses of Tfpi+/- αIIb-/- mice and observed a genetic distribution 39 Tfpi+/+, 77 Tfpi+/- and 6 Tfpi-/- (25% or 31 Tfpi-/- were expected, 5% observed, 95% CI 1.8 to 10.4%). Thus, genetic absence of αIIb results in incomplete rescue of Tfpi-/- mice (P< 0.000002, Χ2 GOF) with only ~20% surviving past embryonic development to 4 weeks of age. These data contrast with 40% Tfpi-/- offspring surviving in the absence of Par4 (Tfpi+/- Par4-/- intercrosses: 23 Tfpi+/+, 39 Tfpi+/- and 8 Tfpi-/-; PMID 25954015). Thus, the absence of αIIb is much less effective than the absence of Par4 in allowing early survival of TFPI null mice (P < 1.9E-09; Χ2 test of independence). We compared survival of Tfpi-/- αIIb-/- offspring close to term of pregnancy (18.5 dpc) and at 4 weeks of age. TFPI null embryos were found at reduced frequency at 18.5 dpc (12 Tfpi+/+, 21 Tfpi+/- and 5 Tfpi-/-; 25% Tfpi-/- expected, 13% observed, 95% CI 4.4 to 28.1%), but even fewer survived the trauma of birth (P<0.0004, Χ2 test of independence). Of the 6 Tfpi-/- αIIb-/- pups found at 4 weeks of age, 3 died by 9 weeks of age. Dome shaped heads indicative of hydrocephalus or histological evidence of hydrocephalus was noted in the pups that died. Surviving mice were observed for 7 months to 1 year of age and imaged with MRI. Comparison of ventricular volumes between Tfpi-/- mice and Tfpi+/- controls demonstrated a higher volume in Tfpi-/- mice (39.3 ± 18.3 versus 5.3 ± 2.2 mm3; P=0.08). Both Tfpi-/- and Tfpi+/- mice were αIIb-/- in this experiment. Thus, αIIb in not involved in hydrocephalus formation. Hydrocephalus formation in Tfpi-/- mice was confirmed through serial histological sections of the brain (Figure 1). Conclusions: Our data demonstrates that genetic absence of αIIb improves survival of TFPI null mice, but to a much lesser extent than the genetic absence of Par4. Thus, the critical role of Par4 in the demise of TFPI null mice is unlikely to be primarily through excessive platelet aggregation. We further show that TFPI null pups exhibit varying degrees of hydrocephalus formation. While the mechanism of hydrocephalus formation in the absence of TFPI remains unclear, our results demonstrate a critical role of TFPI in the brain. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Gabrielle E Brown ◽  
Leslie S. Ritter ◽  
Paul F. McDonagh ◽  
Zoe Cohen

Platelets expose phosphatidylserine (PS), a component of the prothrombinase complex, on the outer surface of the plasma membrane when activated. [ref 1] The prothrombinase complex catalyzes the conversion of prothrombin to thrombin, and it has been demonstrated that an increase in PS exposure is correlated with an increase in thrombin generation by platelets. [refs 2,3] Similarly, erythrocyte (RBC) activation, or eryptosis, is also characterized by PS exposure on the plasma membrane. [ref 4] Although PS exposure on RBCs is considered a signal for splenic macrophage destruction, eryptosis may allow RBCs to contribute to thrombosis.[ref 4] The aims of this study were to determine whether the addition of RBCs to platelets increased functional platelet aggregation and coagulation properties. A ratio of 4 RBCs to 1 platelet (4:1) was evaluated for aggregation and coagulation compared to platelet control. Platelet aggregation and coagulation properties were evaluated with impedance aggregometry and thromboelastography, respectively. The 4:1 experimental group had significant increases in aggregation and coagulation relative to the platelet control. These results indicate that RBCs increase platelet aggregation and coagulation properties. This suggests that RBCs play a role in diseases traditionally thought of as associated solely via dysregulated platelet activation.


1981 ◽  
Author(s):  
M Yamamoto ◽  
K Watanabe ◽  
Y Ando ◽  
H Iri ◽  
N Fujiyama ◽  
...  

It has been suggested that heparin caused potentiation of aggregation induced by ADP or epinephrine. The exact mechanism of heparin-induced platelet activation, however, remained unknown. In this paper, we have investigated the role of anti-thrombin III ( AT ) in heparin-induced platelet activation using purified AT and AT depleted plasma. When ADP or epinephrine was added to citrated PRP one minute after addition of heparin ( 1 u/ml, porcine intestinal mucosal heparin, Sigma Co. USA ), marked enhancement of platelet aggregation was observed, compared with the degree of aggregation in the absence of heparin. However, in platelet suspensions prepared in modified Tyrode’s solution, heparin exhibited no potentiating effect on platelet aggregation induced by epinephrine or ADP. Potentiation of epinephrine- or ADP-induced platelet aggregation by heparin was demonstrated when purified AT was added to platelet suspensions at a concentration of 20 μg/ml. AT depleted plasma, which was prepared by immunosorption using matrix-bound antibodies to AT, retained no AT, while determination of α1-antitrypsinα2- macroglobulin and fibrinogen in AT depleted plasma produced values which corresponded to those of the original plasma when dilution factor was taken into account. The activities of coagulation factors were also comparable to those of the original plasma. Heparin exhibited potentiating effect on ADP- or epinephrine-induced aggregation of platelets in original plasma, but no effect in AT depleted plasma. When purified AT was added back to AT depleted plasma at a concentration of 20 μg/ml, potentiation of platelet aggregation by heparin was clearly demonstrated.Our results suggest that effect of heparin on platelet aggregation is also mediated by anti-thrombin III.


Blood ◽  
2004 ◽  
Vol 104 (6) ◽  
pp. 1703-1710 ◽  
Author(s):  
Juhua Chen ◽  
Sarmishtha De ◽  
Derek S. Damron ◽  
William S. Chen ◽  
Nissim Hay ◽  
...  

Abstract We investigated the role of Akt-1, one of the major downstream effectors of phosphoinositide 3-kinase (PI3K), in platelet function using mice in which the gene for Akt-1 had been inactivated. Using ex vivo techniques, we showed that Akt-1-deficient mice exhibited impaired platelet aggregation and spreading in response to various agonists. These differences were most apparent in platelets activated with low concentrations of thrombin. Although Akt-1 is not the predominant Akt isoform in mouse platelets, its absence diminished the amount of total phospho-Akt and inhibited increases in intracellular Ca2+ concentration in response to thrombin. Moreover, thrombin-induced platelet α-granule release as well as release of adenosine triphosphate from dense granules was also defective in Akt-1-null platelets. Although the absence of Akt-1 did not influence expression of the major platelet receptors for thrombin and collagen, fibrinogen binding in response to these agonists was significantly reduced. As a consequence of impaired αIIbβ3 activation and platelet aggregation, Akt-1 null mice showed significantly longer bleeding times than wild-type mice. (Blood. 2004;104:1703-1710)


2020 ◽  
Vol 21 (11) ◽  
pp. 3932 ◽  
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Youngheun Jee ◽  
Seung-Hun Lee ◽  
Kyung-Mee Park ◽  
...  

Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.


Sign in / Sign up

Export Citation Format

Share Document