Leakage-current characteristics of sol–gel-derived Ba1-xSrxTiO3 (BST) thin films

2000 ◽  
Vol 26 (4) ◽  
pp. 421-425 ◽  
Author(s):  
Soo-Ik Jang ◽  
Hyun M. Jang
2000 ◽  
Vol 656 ◽  
Author(s):  
P. C. Joshi ◽  
M. W. Cole ◽  
E. Ngo ◽  
C. W. Hubbard

ABSTRACTBa1−xSrxTiO3 thin films are being developed for high-density DRAM devices. The nonlinearity of its dielectric properties with respect to applied dc voltage makes it attractive for tunable microwave devices. For successful integration into microwave devices, extremely reliable Ba1−xSrxTiO3 thin films with enhanced dielectric and insulating properties are desired. Properties of Ba1−xSrxTiO3are typically varied by changing the Ba/Sr ratio and/or doping. In this paper, we reports on the effects of acceptor and donor doping on the microstructural and electrical properties of Ba0.6Sr0.4TiO3 (BST) thin films deposited by metalorganic solution deposition technique on platinum coated silicon substrates. The effects of doping on structure, dielectric permittivity, dielectric loss tangent, and leakage current have been analyzed. The structure of the films was analyzed by x-ray diffraction (XRD). The surface morphology of the films was examined by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The electrical measurements were conducted on MIM capacitors using Pt as the top and bottom electrode. It was possible to significantly improve the dielectric loss and leakage current characteristics, and control the dielectric tunability by doping the BST thin films.


2012 ◽  
Vol 520 (9) ◽  
pp. 3620-3623 ◽  
Author(s):  
Li Lu ◽  
Takashi Nishida ◽  
Masahiro Echizen ◽  
Kiyoshi Uchiyama ◽  
Yukiharu Uraoka

2010 ◽  
Vol 434-435 ◽  
pp. 228-230
Author(s):  
Cheng Hsing Hsu ◽  
Shih Yao Lin ◽  
Hsin Han Tung

This paper describes microstructure and leakage current characteristics of ZrTiO4 thin films on ITO/Glass substrate were deposited by sol-gel method with a fix per-heating temperature of 250oC for 30min at various annealing temperatures from 600oC to 800oC for 1 hr. The annealed films were characterized using X-ray diffraction. The surface morphologies of annealed film were examined by atomic force microscopy. The dependence of the microstructure and leakage current characteristics on annealing temperature was also investigated.


1997 ◽  
Vol 493 ◽  
Author(s):  
Seung-Hyun Kim ◽  
J. G. Hong ◽  
J. C. Gunter ◽  
H. Y. Lee ◽  
S. K. Streiffer ◽  
...  

ABSTRACTFerroelectric PZT thin films on thin RuO2 (10, 30, 50nm)/Pt hybrid bottom electrodes were successfully prepared by using a modified chemical solution deposition method. It was observed that the use of a lOnm RuO2Pt bottom electrode reduced leakage current, and gave more reliable capacitors with good microstructure compare to the use of thicker RuO2/Pt bottom electrodes. Typical P-E hysteresis behavior was observed even at an applied voltage of 3V, demonstrating greatly improved remanence and coercivity. Fatigue and breakdown characteristics, measured at 5V, showed stable behavior, and only below 13-15% degradation was observed up to 1010 cycles. Thicker RuO2 layers resulted in high leakage current density due to conducting lead ruthenate or PZT pyrochlore-ruthenate and a rosette-type microstructure.


2000 ◽  
Vol 617 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

AbstractIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.


2001 ◽  
Vol 685 ◽  
Author(s):  
Won-Jae Lee ◽  
Chang-Ho Shin ◽  
In-Kyu You ◽  
Il-Suk Yang ◽  
Sang-Ouk Ryu ◽  
...  

AbstractThe SrTa2O6 (STO) thin films were prepared by plasma enhanced atomic layer deposition (PEALD) with alternating supply of reactant sources, Sr[Ta(C2H5O)5(C4H10NO)]2 {Strontium bis-[tantalum penta-ethoxide dimethyllaminoethoxide]; Sr(Ta(OEt)5▪dmae)2} and O2plasma. It was observed that the uniform and conformal STO thin films were successfully deposited using PEALD and the film thickness per cycle was saturated at about 0.8 nm at 300°C. Electrical properties of SrTa2O6 (STO) thin films prepared on Pt/SiO2/Si substrates with annealing temperatures have been investigated. While the grain size and dielectric constant of STO films increased with increasing annealing temperature, the leakage current characteristics of STO films slightly deteriorated. The leakage current density of a 40nm-STO film was about 5×10−8A/cm2 at 3V.


Sign in / Sign up

Export Citation Format

Share Document