Tissue engineering of TMJ cartilage-phase I: induction of chondrogenesis in human dermal fibroblasts and biomechanical properties of TMJ cartilage

2003 ◽  
Vol 61 (8) ◽  
pp. 48 ◽  
Author(s):  
Howard A. Israel ◽  
SB Nicoll ◽  
RL Mauck
Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1874 ◽  
Author(s):  
Natalia V. Smirnova ◽  
Konstantin A. Kolbe ◽  
Elena N. Dresvyanina ◽  
Sergey F. Grebennikov ◽  
Irina P. Dobrovolskaya ◽  
...  

This paper discusses the mechanical and physicochemical properties of film matrices based on chitosan, as well as the possibility of optimizing these properties by adding chitin nanofibrils. It is shown that with the introduction of chitin nanofibrils as a filler, the mechanical stability of the composite materials increases. By varying the concentration of chitin nanofibrils, it is possible to obtain a spectrum of samples with different bioactive properties for the growth of human dermal fibroblasts. Film matrices based on the nanocomposite of chitosan and 5 wt % chitin nanofibrils have an optimal balance of mechanical and physicochemical properties and bioactivity in relation to the culture of human dermal fibroblasts.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Min Sup Kim ◽  
Sang Jun Park ◽  
Bon Kang Gu ◽  
Chun-Ho Kim

We describe here the preparation of poly(caprolactone) (PCL)-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of340.5±2.6 nm, compared with a diameter of524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing30~50% (wt/wt) chitin were enhanced compared with PCL-only mats.In vitrostudies showed that the viability of human dermal fibroblasts (HDFs) for up to 7 days in culture was higher on composite (OD value:1.42±0.09) than on PCL-only (0.51±0.14) nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.


2015 ◽  
Vol 749 ◽  
pp. 457-460
Author(s):  
Bon Kang Gu ◽  
Sang Jun Park ◽  
Min Sup Kim ◽  
Chun Ho Kim

In this study, we developed the porous alginate (AL) scaffolds with modified pores size and distributions to actively control tissue regeneration. An addition of 5 and 10% (v/v) butanol to AL solution was effective to control pores structures of AL scaffolds. Especially, increased amount of butanol induced that proportion of smaller pores (size of around 5~10 μm) on AL scaffolds increased. Using swelling kinetics analysis, we confirmed that micro pore modified AL scaffolds show faster swelling rate than pristine scaffolds. During in vitro study, the enhanced viability and proliferation of human dermal fibroblasts (HDFs) were observed by the pore size and distribution from micro pore modified AL scaffolds. However, AL scaffolds added 10 % butanol with excessive proportion of smaller pores induced the decreased viability of HDFs for 7 days. From our results, AL scaffolds with modified pores structures represent a potential implants to control biological in vitro and in vivo functions in a variety of tissue engineering.


1998 ◽  
Vol 530 ◽  
Author(s):  
S. B. Nicoll ◽  
A. Wedrychowska ◽  
N. R. Smith ◽  
R. S. Bhatnagar

AbstractCurrent methods for correcting articular cartilage defects are limited by a scarcity of cartilage cells. Here we describe a novel method for the conversion of human dermal fibroblasts to chondrocyte-like cells and the potential application of this methodology to cartilage tissue engineering. Human neonatal foreskin fibroblasts were seeded on two-dimensional, tissue culture polystyrene (TCPS) in high density micromass cultures in the presence of staurosporine (50-200 nM), a protein kinase C (PKC) inhibitor, and lactic acid (40 mM) to induce functional hypoxia. Dermal fibroblasts were similarly cultured on three-dimensional polymer scaffolds composed of a non-woven polyglycolic acid (PGA) fiber mesh reinforced in a dilute solution of poly(L-lactic acid) (PLLA). At 24 hours, northern analysis revealed a staurosporine dose-dependent increase in aggrecan core protein expression in lactate-treated micromass cultures on TCPS, while type I collagen gene expression was virtually abolished in all cultures supplemented with staurosporine. The cells in these cultures displayed a rounded, cobblestone-shaped morphology typical of differentiated chondrocytes (most pronounced at 200 n.M staurosporine and 40 mM lactate), and were organized into nodules which stained positively with Alcian blue. When seeded on PGA/PLLA matrices under identical conditions as described for TCPS, a chondrocyte-like morphology was observed in cultures treated with lactate and staurosporine in contrast to the flattened sheets of fibroblast-like cells seen in untreated controls. Taken together, the above findings suggest that staurosporine treatment coupled with high density micromass culture in the presence of lactate induces chondrogenic differentiation in human dermal fibroblasts, and that these cells may be used in concert with three-dimensional polymer scaffolds for the repair of articular cartilage lesions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Asma Manzari-Tavakoli ◽  
Roghayeh Tarasi ◽  
Roya Sedghi ◽  
Ali Moghimi ◽  
Hassan Niknejad

AbstractThe utilization of conductive polymers for fabrication of neural scaffolds have attracted much interest because of providing a microenvironment which can imitate nerve tissues. In this study, polypyrrole (PPy)–alginate (Alg) composites were prepared using different percentages of alginate and pyrrole by oxidative polymerization method using FeCl3 as an oxidant and electrical conductivity of composites were measured by four probe method. In addition, chitosan-based nanoparticles were synthesized by ionic gelation method and after characterization merged into PPy–Alg composite in order to fabricate a conductive, hydrophilic, processable and stable scaffold. Physiochemical characterization of nanochitosan/PPy–Alg scaffold such as electrical conductivity, porosity, swelling and degradation was investigated. Moreover, cytotoxicity and proliferation were examined by culturing OLN-93 neural and human dermal fibroblasts cells on the Nanochitosan/PPy–Alg scaffold. Due to the high conductivity, the film with ratio 2:10 (PPy–Alg) was recognized more suitable for fabrication of the final scaffold. Results from FT-IR and SEM, evaluation of porosity, swelling and degradation, as well as viability and proliferation of OLN-93 neural and fibroblast cells confirmed cytocompatiblity of the Nanochitosan/PPy–Alg scaffold. Based on the features of the constructed scaffold, Nanochitosan/PPy–Alg scaffold can be a proper candidate for neural tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document