Response of hydroponically grown gerbera to nutrient solution recycling and different nutrient cation ratios

2002 ◽  
Vol 96 (1-4) ◽  
pp. 267-280 ◽  
Author(s):  
Dimitrios Savvas ◽  
George Gizas
2021 ◽  
pp. 103898
Author(s):  
Panayiota Xylia ◽  
Antonios Chrysargyris ◽  
George Botsaris ◽  
Panagiotis Skandamis ◽  
Nikolaos Tzortzakis

2013 ◽  
Vol 8 (3-4) ◽  
pp. 433-439 ◽  
Author(s):  
G. Pilatakis ◽  
T. Manios ◽  
N. Tzortzakis

Municipal wastewater may be used in agriculture but requires a careful monitoring of several hygiene parameters. The impact of direct application of treated wastewater in plant growth and development in hydroponically grown cucumber was studied. Cucumber seedlings used under 5 treatments of nutrient solution, which were basic nutrient solution (control), primary (PA) and secondary (SA) wastewater with or without nutrient solution enrichment (NS). The use of PA ± NS reduced plant height, leaf number and flowers produced as well as leaf size in cucumber plants but increased stem diameter. When SA ± NS used, no similar changes observed. The increased fruit number and fresh weight, when PA and SA used, resulted in increased yields as marked at the first week. The NS enrichment in PA reduced (up to 25%) plant yield while no differences observed in total fruit number among the treatments. No differences observed in plant biomass, root length and leaf chlorophyll levels among the treatments. The leaf photosynthetic rate and stomatal conductance increased in plant grown in PA ± NS and SA, but they did not differ in SA ± NS. The use of wastewater resulted in disease spread in roots and fruits (by cross-contamination). Further exploitation is necessary for microbial load reduction with wastewater application.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 488E-488
Author(s):  
Keun Ho Cho ◽  
Chiwon W. Lee ◽  
Larry J. Cihacek ◽  
Robert W. Stack ◽  
Hoon Kang

The influence of calcium (Ca++) nutrition on the growth and root tissue electrolyte leakage (EL) of carrot (Daucus carota) was investigated using a hydroponic culture system. Seedlings of `Navajo' carrot were grown for 10 weeks with roots submersed in hydroponic nutrient solutions containing 0, 0.1, 1, 2, 4, or 8 meq/L Ca++. The nutrient solution was replenished weekly with its pH maintained at 5.8 for the entire experimental period. The tap root lengths increased as solution Ca++ concentration increased. The diameter and fresh and dry weights of the tap roots increased as Ca++ concentration increased up to 4 meq/L, and then decreased at 8 meq/L Ca++. The root and petiole concentrations of sugar, potassium, and nitrate were unaffected by changes in nutrient solution Ca++ levels. The tissue EL, when tested for the stored roots, decreased as solution Ca++ concentration increased (r = 0.602). Results of this experiment suggest that calcium nutrition is essential for maintaining cell wall integrity in hydroponically grown carrot roots.


HortScience ◽  
1994 ◽  
Vol 29 (6) ◽  
pp. 621-623 ◽  
Author(s):  
Waylen Y. Wan ◽  
Weixing Cao ◽  
Theodore W. Tibbitts

Because tuberization in potatoes (Solarium tuberosum L.) reportedly is inhibited when stolons are immersed in liquid, this study was conducted to determine the effect of intermittent pH reductions of the nutrient solution on tuber induction of potatoes in solution culture. Tissue-culture potato plantlets were transplanted into solutions maintained at pH 5.5. The pH of the nutrient solution was changed to 3.5 and 4.0 for 10 hours on each of three dates (30, 35, and 40 days after transplanting). For the pH 3.5 treatment, tubers were observed first on day 42 and averaged 140 tubers per plant at harvest on day 54. For the pH 4.0 treatment, tubers were observed first on day 48 and averaged 40 tubers per plant at harvest. At a constant pH 5.5, tubers were observed on day 52 and averaged two tubers per plant at harvest. Plants with the intermittent pH 3.5 had smaller shoots and roots with shorter and thicker stolons compared to constant pH 5.5. With the intermittent pH 4.0, plants were of similar size, but stolons were shorter and slightly thickener compared to those from pH 5.5. Mineral composition of leaf tissues at harvest was similar for the three pH treatments. These results indicate that regulation of solution pH can be a useful technique for inducing tuberization in potatoes.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 612-617 ◽  
Author(s):  
Jeffrey F. Derr ◽  
Thomas J. Monaco ◽  
Thomas J. Sheets

The butyl ester of fluazifop {[(±)-2-[4-[[5-trifluoromethyl)-2-pyridinyl] oxy] phenoxy)propanoic acid} at 0.26 μM in nutrient solution inhibited root growth of hydroponically grown goosegrass (Eleusine indicaGaertn. ♯ ELEIN), large crabgrass [Digitaria sanguinalis(L.) Scop. ♯ DIGSA], and giant foxtail (Setaria faberiHerrm. ♯ SETFA). Treating the soil and plant foliage at 0.035 or 0.07 kg ai/ha did not result in greater phytotoxicity than exposing only the foliage of each grass to the herbicide. Foliar-applied fluazifop was retained on the foliage in similar amounts by each of the species. Translocation of14C to all plant parts was detected 6 h after foliar application of the butyl ester of14C-fluazifop to the grasses in the pretillering or tillering stage. The majority (90%) of14C absorbed by each of the species remained in the treated leaf. In hydroponic studies, each species exuded14C into nutrient solution following foliar application of the14C-labeled herbicide. The exuded material was predominantly fluazifop with small amounts of compounds more polar than the butyl ester of fluazifop. Uptake and translocation studies suggest that the greater sensitivity of goosegrass to fluazifop may be related to higher concentrations of the herbicide present in plant tissue.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 584
Author(s):  
Iwona Kowalska ◽  
Sylwester Smoleń ◽  
Małgorzata Czernicka ◽  
Maryia Halka ◽  
Kinga Kęska ◽  
...  

Selenium (Se) uptake by plants depends on its form and salicylic acid (SA) can increase the efficiency of plant biofortification in Se. This study investigated the effects of selenite (Na2SeO3) and selenomethionine (SeMet) applied individually or together with SA on a total content of Se, Se speciation forms, yield and content of sugars and ascorbic acid of lettuce, as well as activity of selenocysteine methyltransferase (smt) and methionine methyltransferase (mmt) genes of the Se metabolic pathway. Lettuce was grown in the nutrient film technique (NFT) system. Se and SA were used at doses of 0.5 and 10.0 mg dm−3 of the nutrient solution, respectively. The treatments were: 1. control, 2. Na2SeO3, 3. Na2SeO3 + SA, 4. SeMet, 5. SeMet + SA, 6. SA. Se was accumulated more in the roots than the leaves. SeMet was more effective in biofortification than Na2SeO3. SA enhanced Se uptake, especially organic Se. Plants supplied with SeMet alone or SeMet + SA accumulated in their leaves mainly SeMet and methylselenocysteine (MeSeCys), while those treated with Na2SeO3 or Na2SeO3 + SA accumulated MeSeCys and selenite (SeO3−2). The roots showed no expression of smt, while the expression of two mmt genes was independent of either Se or SA. The leaves of plants supplied with Na2SeO3 demonstrated the strongest expression of mmt and smt.


Sign in / Sign up

Export Citation Format

Share Document