scholarly journals Classical and quantum cross-section for black hole production in particle collisions

2002 ◽  
Vol 533 (1-2) ◽  
pp. 153-161 ◽  
Author(s):  
Sergey N. Solodukhin
2003 ◽  
Vol 18 (22) ◽  
pp. 4085-4096 ◽  
Author(s):  
SHARADA IYER DUTTA ◽  
MARY HALL RENO ◽  
INA SARCEVIC

The ultrahigh energy neutrino cross section is well understood in the standard model for neutrino energies up to 1012 GeV, Tests of neutrino oscillations (νμ ↔ ντ) from extragalactic sources of neutrinos are possible with large underground detectors. Measurements of horizontal air shower event rates at neutrino energies above 1010 GeV will be able to constrain nonstandard model contributions to the neutrino-nucleon cross section, e.g., from mini-black hole production.


2010 ◽  
Vol 2010 (12) ◽  
Author(s):  
Shao-Wen Wei ◽  
Yu-Xiao Liu ◽  
Hai-Tao Li ◽  
Feng-Wei Chen

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Tianyi Li ◽  
Jinwei Chu ◽  
Yang Zhou

Abstract We study reflected entropy as a mixed state correlation measure in black hole evaporation. As a measure for bipartite mixed states, reflected entropy can be computed between black hole and radiation, radiation and radiation, and even black hole and black hole. We compute reflected entropy curves in three different models: 3-side wormhole model, End-of-the-World (EOW) brane model in three dimensions and two-dimensional eternal black hole plus CFT model. For 3-side wormhole model, we find that reflected entropy is dual to island cross section. The reflected entropy between radiation and black hole increases at early time and then decreases to zero, similar to Page curve, but with a later transition time. The reflected entropy between radiation and radiation first increases and then saturates. For the EOW brane model, similar behaviors of reflected entropy are found.We propose a quantum extremal surface for reflected entropy, which we call quantum extremal cross section. In the eternal black hole plus CFT model, we find a generalized formula for reflected entropy with island cross section as its area term by considering the right half as the canonical purification of the left. Interestingly, the reflected entropy curve between the left black hole and the left radiation is nothing but the Page curve. We also find that reflected entropy between the left black hole and the right black hole decreases and goes to zero at late time. The reflected entropy between radiation and radiation increases at early time and saturates at late time.


2009 ◽  
Vol 64 (3-4) ◽  
pp. 233-236 ◽  
Author(s):  
Sang-Chul Na ◽  
Young-Dae Jung

Abstract The effects of neutral particle collisions on the quantum interference in electron-electron collisions are investigated in collisional plasmas. The effective potential model taking into account the electronneutral particle collision effects is employed in order to obtain the electron-electron collision cross section including the total spin states of the collision system. It is found that the collision effects significantly enhance the cross section. In addition, the collision-induced quantum interference effects are found to be significant in the singlet spin state. It is shown that the quantum interference effects decrease with increasing the thermal energy of the plasma. It is also shown that the quantum interference effects increase with an increase of the collision energy


2005 ◽  
Vol 20 (11) ◽  
pp. 2398-2402 ◽  
Author(s):  
VYACHESLAV S. RYCHKOV

A semiclassical picture of black hole production in trans-Planckian collisions is reviewed.


2019 ◽  
Vol 28 (13) ◽  
pp. 1941005 ◽  
Author(s):  
Vyacheslav Dokuchaev

How the supermassive black hole SgrA* in the Milky Way Center looks like for a distant observer? It depends on the black hole highlighting by the surrounding hot matter. The black hole shadow (the photon capture cross-section) would be viewed if there is a stationary luminous background. The black hole event horizon is invisible directly (per se). Nevertheless, a more compact (with respect to black hole shadow) projection of the black hole event horizon on the celestial sphere may be reconstructed by detecting the highly redshifted photons emitted by the nonstationary luminous matter plunging into the black hole and approaching the event horizon. It is appropriate to call this reconstructed projection of the event horizon on the celestial sphere for a distant observer as the “lensed event horizon image”, or simply the “event horizon image”. This event horizon image is placed on the celestial sphere within the position of black hole shadow. Amazingly, the event horizon image is a gravitationally lensed projection on the celestial sphere of the whole surface of the event horizon globe. As a result, the black holes may be viewed at once from both the front and back sides. The lensed event horizon image may be considered as a genuine silhouette of the black hole. For example, a dark northern hemisphere of the event horizon image is the simplest model for a black hole silhouette in the presence of a thin accretion disk.


Sign in / Sign up

Export Citation Format

Share Document