Up-regulated expression of genes encoding Hrk and IL-3R beta subunit by TCDD in vivo and in vitro

2002 ◽  
Vol 129 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
Joo-Hung Park ◽  
Soo-Woong Lee
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


1999 ◽  
Vol 19 (3) ◽  
pp. 2044-2050 ◽  
Author(s):  
Seok Hee Park ◽  
Sang Seok Koh ◽  
Jae Hwan Chun ◽  
Hye Jin Hwang ◽  
Hyen Sam Kang

ABSTRACT Expression of genes encoding starch-degrading enzymes is regulated by glucose repression in the yeast Saccharomyces cerevisiae. We have identified a transcriptional repressor, Nrg1, in a genetic screen designed to reveal negative factors involved in the expression of STA1, which encodes a glucoamylase. TheNRG1 gene encodes a 25-kDa C2H2zinc finger protein which specifically binds to two regions in the upstream activation sequence of the STA1 gene, as judged by gel retardation and DNase I footprinting analyses. Disruption of theNRG1 gene causes a fivefold increase in the level of theSTA1 transcript in the presence of glucose. The expression of NRG1 itself is inhibited in the absence of glucose. DNA-bound LexA-Nrg1 represses transcription of a target gene 10.7-fold in a glucose-dependent manner, and this repression is abolished in bothssn6 and tup1 mutants. Two-hybrid and glutathione S-transferase pull-down experiments show an interaction of Nrg1 with Ssn6 both in vivo and in vitro. These findings indicate that Nrg1 acts as a DNA-binding repressor and mediates glucose repression of the STA1 gene expression by recruiting the Ssn6-Tup1 complex.


2006 ◽  
Vol 188 (23) ◽  
pp. 8033-8043 ◽  
Author(s):  
Grace L. Axler-DiPerte ◽  
Virginia L. Miller ◽  
Andrew J. Darwin

ABSTRACT Yersinia enterocolitica causes human gastroenteritis, and many isolates have been classified as either “American” or “non-American” strains based on their geographic prevalence and virulence properties. In this study we describe identification of a transcriptional regulator that controls expression of the Y. enterocolitica ytxAB genes. The ytxAB genes have the potential to encode an ADP-ribosylating toxin with similarity to pertussis toxin. However, a ytxAB null mutation did not affect virulence in mice. Nevertheless, the ytxAB genes are conserved in many Y. enterocolitica strains. Interestingly, American and non-American strains have different ytxAB alleles encoding proteins that are only 50 to 60% identical. To obtain further insight into the ytxAB locus, we investigated whether it is regulated as part of a known or novel regulon. Transposon mutagenesis identified a LysR-like regulator, which we designated YtxR. Expression of ytxR from a nonnative promoter increased Φ(ytxA-lacZ) operon fusion expression up to 35-fold. YtxR also activated expression of its own promoter. DNase I footprinting showed that a His6-YtxR fusion protein directly interacted with the ytxA and ytxR control regions at similar distances upstream of their probable transcription initiation sites, identified by primer extension. Deletion analysis demonstrated that removal of the regions protected by His6-YtxR in vitro eliminated YtxR-dependent induction in vivo. The ytxAB locus is not present in most Yersinia species. In contrast, ytxR is conserved in multiple Yersinia species, as well as in the closely related organisms Photorhabdus luminescens and Photorhabdus asymbiotica. These observations suggest that YtxR may play a conserved role involving regulation of other genes besides ytxAB.


2011 ◽  
Vol 22 (17) ◽  
pp. 3263-3275 ◽  
Author(s):  
T. T. Giang Ho ◽  
Audrey Stultiens ◽  
Johanne Dubail ◽  
Charles M. Lapière ◽  
Betty V. Nusgens ◽  
...  

RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug–activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor α (RhoGDIα) and the overexpression of a RhoA mutant unable to bind RhoGDIα suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDIα. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression.


2012 ◽  
Vol 59 (4) ◽  
Author(s):  
Wei-Ping Chen ◽  
Chong Yu ◽  
Peng-Fei Hu ◽  
Jia-Peng Bao ◽  
Jing-Li Tang ◽  
...  

Stigmasterol has been shown exhibit anti-osteoarthritic properties in vitro studies. However, the in vivo effects of stigmasterol on cartilage are still unclear. This study investigated the anti-osteoarthritic properties of stigmasterol on cartilage degradation in a rabbit model of osteoarthritis (OA). Twenty rabbits underwent bilateral anterior cruciate ligament transection (ACLT) to induce OA. Five rabbits were used as normal control. Two weeks after operation, the rabbits were randomly divided into two groups. Each group of 10 rabbits received intra-articular injection with 0.3 ml of stigmasterol in left knees and vehicle in right knees, once weekly. Group 1 was killed 6 weeks after ACLT and 2 were sacrificed 9 weeks after ACLT. The knee joints were assessed by gross morphology, histology and gene expression analysis. We found that expression of genes encoding matrix metalloproteinases (MMPs) was significantly higher while tissue inhibitors of metalloproteinase (TIMP)-1 was significantly lower in the both joints of the two OA groups compared to normal controls. Stigmasterol reduced the cartilage degradation as assessed by histological analysis and markedly suppressed MMPs expression both in group 1 and group 2. Our results suggest that stigmasterol may be considered as a possible therapeutical agent in the treatment of OA.


2005 ◽  
Vol 73 (7) ◽  
pp. 4025-4033 ◽  
Author(s):  
R. Datta ◽  
M. L. deSchoolmeester ◽  
C. Hedeler ◽  
N. W. Paton ◽  
A. M. Brass ◽  
...  

ABSTRACT Infection of resistant or susceptible mice with Trichuris muris provokes mesenteric lymph node responses which are polarized towards Th2 or Th1, respectively. These responses are well documented in the literature. In contrast, little is known about the local responses occurring within the infected intestine. Through microarray analyses, we demonstrate that the gene expression profile of infected gut tissue differs according to whether the parasite is expelled or not. Genes differentially regulated postinfection in resistant BALB/c mice include several antimicrobial genes, in particular, intelectin (Itln). In contrast, analyses in AKR mice which ultimately progress to chronic infection provide evidence for a Th1-dominated mucosa with up-regulated expression of genes regulated by gamma interferon. Increases in the expression of genes associated with tryptophan metabolism were also apparent with the coinduction of tryptophanyl tRNA synthetase (Wars) and indoleamine-2,3-dioxygenase (Indo). With the emerging literature on the role of these gene products in the suppression of T-cell responses in vitro and in vivo, their up-regulated expression here may suggest a role for tryptophan metabolism in the parasite survival strategy.


2007 ◽  
Vol 18 (11) ◽  
pp. 4261-4278 ◽  
Author(s):  
Jennifer M. Halbleib ◽  
Annika M. Sääf ◽  
Patrick O. Brown ◽  
W. James Nelson

Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Pei-Yao Liu ◽  
Cheng-Cheung Chen ◽  
Chia-Ying Chin ◽  
Te-Jung Liu ◽  
Wen-Chiuan Tsai ◽  
...  

AbstractIn obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


Diabetologia ◽  
2021 ◽  
Author(s):  
Yukina Takeichi ◽  
Takashi Miyazawa ◽  
Shohei Sakamoto ◽  
Yuki Hanada ◽  
Lixiang Wang ◽  
...  

Abstract Aims/hypothesis Mitochondria are highly dynamic organelles continuously undergoing fission and fusion, referred to as mitochondrial dynamics, to adapt to nutritional demands. Evidence suggests that impaired mitochondrial dynamics leads to metabolic abnormalities such as non-alcoholic steatohepatitis (NASH) phenotypes. However, how mitochondrial dynamics are involved in the development of NASH is poorly understood. This study aimed to elucidate the role of mitochondrial fission factor (MFF) in the development of NASH. Methods We created mice with hepatocyte-specific deletion of MFF (MffLiKO). MffLiKO mice fed normal chow diet (NCD) or high-fat diet (HFD) were evaluated for metabolic variables and their livers were examined by histological analysis. To elucidate the mechanism of development of NASH, we examined the expression of genes related to endoplasmic reticulum (ER) stress and lipid metabolism, and the secretion of triacylglycerol (TG) using the liver and primary hepatocytes isolated from MffLiKO and control mice. Results MffLiKO mice showed aberrant mitochondrial morphologies with no obvious NASH phenotypes during NCD, while they developed full-blown NASH phenotypes in response to HFD. Expression of genes related to ER stress was markedly upregulated in the liver from MffLiKO mice. In addition, expression of genes related to hepatic TG secretion was downregulated, with reduced hepatic TG secretion in MffLiKO mice in vivo and in primary cultures of MFF-deficient hepatocytes in vitro. Furthermore, thapsigargin-induced ER stress suppressed TG secretion in primary hepatocytes isolated from control mice. Conclusions/interpretation We demonstrated that ablation of MFF in liver provoked ER stress and reduced hepatic TG secretion in vivo and in vitro. Moreover, MffLiKO mice were more susceptible to HFD-induced NASH phenotype than control mice, partly because of ER stress-induced apoptosis of hepatocytes and suppression of TG secretion from hepatocytes. This study provides evidence for the role of mitochondrial fission in the development of NASH. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document