578 Biomerkers of susceptibility and DNA damage in humans exposed to chronic low level of ionizing radiation

2003 ◽  
Vol 144 ◽  
pp. s155
Author(s):  
S. Angelini ◽  
R. Kumar ◽  
F. Maffei ◽  
F.S. Violante ◽  
G.Cantelli Forti ◽  
...  
2014 ◽  
Vol 9 (10) ◽  
pp. 915-921 ◽  
Author(s):  
Andrew Gapeyev ◽  
Nina Lukyanova ◽  
Sergey Gudkov

AbstractIt is believed that non-ionizing electromagnetic radiation (EMR) and low-level hydrogen peroxide (H2O2) may change nonspecific resistance and modify DNA damage caused by ionizing radiation. To check this assumption, the combined effects of extremely high-frequency EMR (EHF EMR) and X-rays on induction of DNA damage in mouse whole blood leukocytes were studied. The cells were exposed to X-rays with or without preliminary treatment with EHF EMR or low-level H2O2. With the use of enhanced chemiluminescence, it was shown for the first time that pulse-modulated EHF EMR (42.2 GHz, incident power density of 0.1 mW/cm2, exposure duration of 20 min, modulation frequency of 1 Hz) induced H2O2 at a concentration of 4.6 ± 0.3 nM L−1 in physiological saline. With the use of an alkaline comet assay, it was found that the exposure of cells to the pulse-modulated EHF EMR, 25 min prior to treatment with X-rays at a dose of 4 Gy reduced the level of ionizing radiation-induced DNA damage. Continuous EHF EMR was inefficient. In turn, it was shown that low-level H2O2 (30–500 nM L−1) protected the cells against X-irradiation. Thus, the mechanisms of radiation protective effect of EHF EMR are connected with the induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated EHF EMR.


2019 ◽  
Vol 20 (23) ◽  
pp. 6026
Author(s):  
Hwani Ryu ◽  
Hyo Jeong Kim ◽  
Jie-Young Song ◽  
Sang-Gu Hwang ◽  
Jae-Sung Kim ◽  
...  

We previously reported on a poly (ADP-ribose) polymerase (PARP) 1/2 inhibitor N-(3-(hydroxycarbamoyl)phenyl)carboxamide (designated KJ-28d), which increased the death of human ovarian cancer BRCA1-deficient SNU-251 cells. In the present study, we further investigated the antitumor activities of KJ-28d in BRCA-proficient non-small cell lung cancer (NSCLC) cells to expand the use of PARP inhibitors. KJ-28d significantly inhibited the growth of NSCLC cells in vitro and in vivo, and induced DNA damage and reactive oxygen species in A549 and H1299 cells. Combined treatment with KJ-28d and ionizing radiation led to increased DNA damage responses in A549 and H1299 cells compared to KJ-28d or ionizing radiation alone, resulting in apoptotic cell death. Moreover, the combination of KJ-28d plus a DNA-damaging therapeutic agent (carboplatin, cisplatin, paclitaxel, or doxorubicin) synergistically inhibited cell proliferation, compared to either drug alone. Taken together, the findings demonstrate the potential of KJ-28d as an effective anti-cancer therapeutic agent for BRCA-deficient and -proficient cancer cells. KJ-28d might have potential as an adjuvant when used in combination with radiotherapy or DNA-damaging agents, pending further investigations.


2013 ◽  
Vol 90 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Kwang Seok Kim ◽  
Jung Eun Kim ◽  
Kyu Jin Choi ◽  
Sangwoo Bae ◽  
Dong Ho Kim

2018 ◽  
Vol 234 ◽  
pp. 127-135 ◽  
Author(s):  
Jie Li ◽  
Xiumei Xing ◽  
Xinjie Zhang ◽  
Boxuan Liang ◽  
Zhini He ◽  
...  
Keyword(s):  

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2068
Author(s):  
Andra S. Martinikova ◽  
Monika Burocziova ◽  
Miroslav Stoyanov ◽  
Libor Macurek

Genome integrity is protected by the cell-cycle checkpoints that prevent cell proliferation in the presence of DNA damage and allow time for DNA repair. The transient checkpoint arrest together with cellular senescence represent an intrinsic barrier to tumorigenesis. Tumor suppressor p53 is an integral part of the checkpoints and its inactivating mutations promote cancer growth. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of p53. Although its loss impairs recovery from the G2 checkpoint and promotes induction of senescence, amplification of the PPM1D locus or gain-of-function truncating mutations of PPM1D occur in various cancers. Here we used a transgenic mouse model carrying a truncating mutation in exon 6 of PPM1D (Ppm1dT). As with human cell lines, we found that the truncated PPM1D was present at high levels in the mouse thymus. Truncated PPM1D did not affect differentiation of T-cells in the thymus but it impaired their response to ionizing radiation (IR). Thymocytes in Ppm1dT/+ mice did not arrest in the checkpoint and continued to proliferate despite the presence of DNA damage. In addition, we observed a decreased level of apoptosis in the thymi of Ppm1dT/+ mice. Moreover, the frequency of the IR-induced T-cell lymphomas increased in Ppm1dT/+Trp53+/− mice resulting in decreased survival. We conclude that truncated PPM1D partially suppresses the p53 pathway in the mouse thymus and potentiates tumor formation under the condition of a partial loss of p53 function.


Sign in / Sign up

Export Citation Format

Share Document