The inhibition of the high sensitive peripheral nerve soluble esterases by mipafoxA new mathematical processing for the kinetics of inhibition of esterases by organophosphorus compounds

Author(s):  
J ESTEVEZ
1975 ◽  
Vol 149 (2) ◽  
pp. 463-469 ◽  
Author(s):  
A L Devonshire

Acetylcholinesterase from the heads of insecticide-resistant and -susceptible houseflies (Musca domestica L.) was studied in vitro. The enzymes could not be distinguished electrophoretically, and their behaviour on polyacrylamide-disc-gel electrophoresis was influenced by the presence of Triton X-100 in both the homogenate and the gels. In the absence of detergent, the acetylcholinesterase was heterogeneous, but behaved as a single enzyme when it was present. By analogy with studies of acetylcholinesterase from other sources, these observations were attributed to aggregation of the enzyme when not bound by membranes. The enzyme from resistant flies was more slowly inhibited than the susceptible enzyme, bimolecular rate constants (ki) differing by approx. 4-20-fold for a range of organophosphorus compounds. The kinetics of inhibition of acetylcholinesterase were consistent with the results of electrophoresis, i.e. they corresponded to those of a single enzyme in the presence of Triton X-100, but a mixture of enzymes in its absence. The susceptibility of the more sensitive components in these mixtures was determined.


1966 ◽  
Vol 16 (01/02) ◽  
pp. 277-295 ◽  
Author(s):  
A Silver ◽  
M Murray

SummaryVarious investigators have separated the coagulation products formed when fibrinogen is clotted with thrombin and identified fibrinopeptides A and B. Two other peaks are observed in the chromatogram of the products of coagulation, but these have mostly been dismissed by other workers. They have been identified by us as amino acids, smaller peptides and amorphous material (37). We have re-chromatographed these peaks and identified several amino acids. In a closed system of fibrinogen and thrombin, the only reaction products should be fibrin and peptide A and peptide B. This reasoning has come about because thrombin has been reported to be specific for the glycyl-arginyl peptide bond. It is suggested that thrombin also breaks other peptide linkages and the Peptide A and Peptide B are attacked by thrombin to yield proteolytic products. Thrombin is therefore probably not specific for the glycyl-arginyl bond but will react on other linkages as well.If the aforementioned is correct then the fibrinopeptides A and B would cause an inhibition with the coagulation mechanism itself. We have shown that an inhibition does occur. We suggest that there is an autoinhibition to the clotting mechanism that might be a control mechanism in the human body.The experiment was designed for coagulation to occur under controlled conditions of temperature and time. Purified reactants were used. We assembled an apparatus to record visually the speed of the initial reaction, the rate of the reaction, and the density of the final clot formed after a specific time.The figures we derived made available to us data whereby we could calculate and plot the information to show the mechanism and suggest that such an inhibition does exist and also further suggest that it might be competitive.In order to prove true competitive inhibition it is necessary to fulfill the criteria of the Lineweaver-Burk plot. This has been done. We have also satisfied other criteria of Dixon (29) and Bergman (31) that suggest true competitive inhibition.


2009 ◽  
Vol 70 (5) ◽  
pp. 633-639 ◽  
Author(s):  
Gregory A. Bannikov ◽  
Jeffrey Lakritz ◽  
Christopher Premanandan ◽  
John S. Mattoon ◽  
Eric J. Abrahamsen

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Birte Eikeland

Research in the last few years has indicated that most voltage-gated potassium channel- (VGKC-) complex antibodies without leucine-rich glioma-inactivated protein 1 or contactin-associated protein-like 2 antibody specificity lack pathogenic potential and are not clear markers for autoimmune inflammation. Here we report on a patient with double-negative VGKC who developed severe peripheral nerve hyperexcitability, central nervous system symptoms with agitation and insomnia, dysautonomia, and systemic symptoms with weight loss, itch, and skin lesions. The disease started acutely one month after an episode of enteroviral pericarditis and responded well to immunotherapy. The patient is presumed to have developed a postinfectious immunotherapy-responsive autoimmune disease. In the setting of anti-VGKC positivity, it seems likely that anti-VGKC contributed to the pathogenesis of the patient’s symptoms of nerve hyperexcitability and that the disease was caused by an acquired autoimmune effect on the neuronal kinetics of VGKC. It is still unknown whether or not there are unidentified extracellular molecular targets within the VGKC-complex, i.e., a novel surface antigen and a pathogenic antibody that can cause affected individuals to develop a peripheral nerve hyperexcitability syndrome. This case highlights the fact that less well-characterized autoimmune central and peripheral nervous system syndromes may have infectious triggers.


2010 ◽  
Vol 433 (2) ◽  
pp. e1-e2 ◽  
Author(s):  
Zachary A. Knight

More than 20 protein kinases are directly activated by 3-phosphoinositide-dependent kinase 1 (PDK1), which is a central component of the pathways that regulate cell growth, proliferation and survival. Despite the importance of PDK1 in cell signalling, highly selective PDK1 inhibitors have not been described. In this issue of the Biochemical Journal, Dario Alessi's group and their collaborators at GlaxoSmithKline report GSK2334470, a potent and selective PDK1 inhibitor. They show that this compound blocks the phosphorylation of known PDK1 substrates, but surprisingly find that the potency and kinetics of inhibition vary for different PDK1 targets. This substrate-specific inhibition has implications for the development of PDK1 inhibitors as drugs.


Sign in / Sign up

Export Citation Format

Share Document