W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: biological activity after oral administration to normal and diabetic rats

1998 ◽  
Vol 169 (1) ◽  
pp. 33-44 ◽  
Author(s):  
A Silva-Cunha
2020 ◽  
Vol 20 (9) ◽  
pp. 1504-1513 ◽  
Author(s):  
Ayoub Amssayef ◽  
Mohamed Eddouks

Aims: The current investigation aimed to assess the antioxidant, antidiabetic and antilipidemic effects of the aqueous extract of aerial part of Cotula cinerea (C. cinerea). Background: Cotula cinerea (Del). which belongs to the Asteraceae family is commonly used traditionally for the treatment of diabetes. Objective: The objective of the study was to study the effect of the aqueous C. cinerea extract on glucose and lipid metabolism in normal and streptozotocin-induced diabetic rats using a single and repeated oral administration. Methods: A preliminary phytochemical screening and the quantification of phenolic and flavonoid contents as well as the antioxidant activity using three methods (DPPH, FRAP and ABTS) were carried out. The effect of a single and repeated (15 days of treatment) oral administration of the aqueous extract of aerial part of Cotula cinerea (AEAPCC) at a dose of 20 mg/kg on glucose and lipid profile was examined in normal and streptozotocin-induced diabetic rats. Additionally, histopathological examination of the pancreas and liver was carried out according to the Hematoxylin-Eosin method. Results: AEAPCC (20 mg/kg) showed a significant blood glucose-lowering activity in both normal and diabetic rats after a single and repeated oral administration during 15 days. The aqueous extract was also able to decrease the plasma triglycerides levels in both normal and diabetic rats after 15 days of oral treatment at a dose of 20 mg/Kg while no effect was observed on plasma cholesterol levels. In addition, the results show that AEAPCC exhibits an in vitro antioxidant activity using different tests. Histopathological analysis of the pancreas and liver of AEAPCC-treated diabetic rats has revealed that AEAPCC had a beneficial effect on the architecture of these organs while no improvement of glucose tolerance was noticed using the glucose tolerance test. Furthermore, the results showed that the extract is rich in several phytochemical compounds and exhibited an important antioxidant activity. The phytochemical screening revealed that AEAPCC contains polyphenolic compounds, flavonoids, tannins, alkaloids, saponins, quinones, sterols, terpenoids, anthroquinones and reducing sugars. Whereas, it is free from glycosides. Conclusion: In conclusion, this study demonstrates that Cotula cinerea possesses a beneficial effect on diabetes. Further investigations are required to study the mechanism of action of the antidiabetic effect of this plant.


2019 ◽  
Vol 19 (4) ◽  
pp. 503-510 ◽  
Author(s):  
Mohamed Eddouks ◽  
Farid Khallouki ◽  
Robert W. Owen ◽  
Morad Hebi ◽  
Remy Burcelin

Aims: Arganimide A (4,4-dihydroxy-3,3-imino-di-benzoic acid) is a compound belonging to a family of aminophenolics found in fruit of Argania spinosa. The purpose of this study was to investigate the glucose and lipid lowering activity of Arganimide A (ARG A). Methods: The effect of a single dose and daily oral administration of Arganimide A (ARG A) on blood glucose levels and plasma lipid profile was tested in normal and streptozotocin (STZ) diabetic rats at a dose of 2 mg/kg body weight. Results: Single oral administration of ARG A reduced blood glucose levels from 26.50±0.61 mmol/L to 14.27±0.73 mmol/L (p<0.0001) six hours after administration in STZ diabetic rats. Furthermore, blood glucose levels were decreased from 5.35±0.30 mmol/L to 3.57±0.17 mmol/L (p<0.0001) and from 26.50±0.61 mmol/L to 3.67±0.29 mmol/L (p<0.0001) in normal and STZ diabetic rats, respectively, after seven days of treatment. Moreover, no significant changes in body weight in normal and STZ rats were shown. According to the lipid profile, the plasma triglycerides levels were decreased significantly in diabetic rats after seven days of ARG treatment (p<0.05). Moreover, seven days of ARG A treatment decreased significantly the plasma cholesterol concentrations (p<0.001). Conclusion: ARG A possesses glucose and lipid-lowering activity in diabetic rats and this natural compound may be beneficial in the treatment of diabetes.


2020 ◽  
Vol 8 (3) ◽  
pp. 239-254 ◽  
Author(s):  
Reza Mahjub ◽  
Farzane K. Najafabadi ◽  
Narges Dehkhodaei ◽  
Nejat Kheiripour ◽  
Amir N. Ahmadabadi ◽  
...  

Background: Insulin, like most peptides, is classified as a hydrophilic and macromolecular drug that is considered as a low permeable and unstable compound in the gastrointestinal (GI) tract. The acidic condition of the stomach can degrade insulin molecules. Moreover, the presence of proteolytic activities of some enzymes such as trypsin and chymotrypsin can hydrolyze amide-bonds between various amino-acids in the structures of peptides and proteins. However, due to its simplicity and high patient compliance, oral administration is the most preferred route of systemic drug delivery, and for the development of an oral delivery system, some obstacles in oral administration of peptides and proteins including low permeability and low stability of the proteins in GI should be overcome. Objective: In this study, the effects of orally insulin nanoparticles (INPs) prepared from quaternerized N-aryl derivatives of chitosan on the biochemical factors of the liver in diabetic rats were studied. Methods: INPs composed of methylated (amino benzyl) chitosan were prepared by the PEC method. Lyophilized INPs were filled in pre-clinical capsules, and the capsules were enteric-coated with Eudragit L100. Twenty Male Wistar rats were randomly divided into four groups: group1: normal control rats, group 2: diabetic rats, group 3: diabetic rats received capsules INPs(30 U/kg/day, orally), group 4: the diabetic rats received regular insulin (5 U/kg/day, subcutaneously). At the end of the treatment, serum, liver and kidney tissues were collected. Biochemical parameters in serum were measured using spectrophotometric methods. Also, oxidative stress was measured in plasma, liver and kidney. Histological studies were performed using H and E staining . Results: Biochemical parameters, and liver and kidney injury markers in serum of the diabetic rats that received INPs improved significantly compared with the diabetic group. INPs reduced oxidative toxic stress biomarkers in serum, liver and kidney of the diabetic treated group. Furthermore, a histopathological change was developed in the treated groups. Conclusion: Capsulated INPs can prevent diabetic liver and oxidative kidney damages (similar regular insulin). Therefore oral administration of INPs appears to be safe. Lay Summary: Although oral route is the most preferred route of administration, but oral delivery of peptides and proteins is still a challenging issue. Diabetes Mellitus may lead to severe complications, which most of them are life-threatening. In this study, we are testing the toxicity of oral insulin nanoparticles in kidney and liver of rats. For this investigation, we will prepare insulin nanoparticles composed of a quaternized derivative of chitosan. The nanoparticles will be administered orally to rats and the level of oxidative stress in their liver and kidney will be determined. The data will be compared to the subcutaneous injection of insulin.


Diabetologia ◽  
1992 ◽  
Vol 35 (3) ◽  
pp. 243-248 ◽  
Author(s):  
M. Miralpeix ◽  
E. Carballo ◽  
R. Bartrons ◽  
K. Crepin ◽  
L. Hue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document