Eudragit L-100 Capsules Aromatize and Quaternerize Chitosan for Insulin Nanoparticle Oral Delivery During Toxic Oxidative Stress in Rat Liver and Kidney

2020 ◽  
Vol 8 (3) ◽  
pp. 239-254 ◽  
Author(s):  
Reza Mahjub ◽  
Farzane K. Najafabadi ◽  
Narges Dehkhodaei ◽  
Nejat Kheiripour ◽  
Amir N. Ahmadabadi ◽  
...  

Background: Insulin, like most peptides, is classified as a hydrophilic and macromolecular drug that is considered as a low permeable and unstable compound in the gastrointestinal (GI) tract. The acidic condition of the stomach can degrade insulin molecules. Moreover, the presence of proteolytic activities of some enzymes such as trypsin and chymotrypsin can hydrolyze amide-bonds between various amino-acids in the structures of peptides and proteins. However, due to its simplicity and high patient compliance, oral administration is the most preferred route of systemic drug delivery, and for the development of an oral delivery system, some obstacles in oral administration of peptides and proteins including low permeability and low stability of the proteins in GI should be overcome. Objective: In this study, the effects of orally insulin nanoparticles (INPs) prepared from quaternerized N-aryl derivatives of chitosan on the biochemical factors of the liver in diabetic rats were studied. Methods: INPs composed of methylated (amino benzyl) chitosan were prepared by the PEC method. Lyophilized INPs were filled in pre-clinical capsules, and the capsules were enteric-coated with Eudragit L100. Twenty Male Wistar rats were randomly divided into four groups: group1: normal control rats, group 2: diabetic rats, group 3: diabetic rats received capsules INPs(30 U/kg/day, orally), group 4: the diabetic rats received regular insulin (5 U/kg/day, subcutaneously). At the end of the treatment, serum, liver and kidney tissues were collected. Biochemical parameters in serum were measured using spectrophotometric methods. Also, oxidative stress was measured in plasma, liver and kidney. Histological studies were performed using H and E staining . Results: Biochemical parameters, and liver and kidney injury markers in serum of the diabetic rats that received INPs improved significantly compared with the diabetic group. INPs reduced oxidative toxic stress biomarkers in serum, liver and kidney of the diabetic treated group. Furthermore, a histopathological change was developed in the treated groups. Conclusion: Capsulated INPs can prevent diabetic liver and oxidative kidney damages (similar regular insulin). Therefore oral administration of INPs appears to be safe. Lay Summary: Although oral route is the most preferred route of administration, but oral delivery of peptides and proteins is still a challenging issue. Diabetes Mellitus may lead to severe complications, which most of them are life-threatening. In this study, we are testing the toxicity of oral insulin nanoparticles in kidney and liver of rats. For this investigation, we will prepare insulin nanoparticles composed of a quaternized derivative of chitosan. The nanoparticles will be administered orally to rats and the level of oxidative stress in their liver and kidney will be determined. The data will be compared to the subcutaneous injection of insulin.

2016 ◽  
Vol 35 (11) ◽  
pp. 1183-1193 ◽  
Author(s):  
H Guo ◽  
Y Liu ◽  
L Wang ◽  
G Zhang ◽  
S Su ◽  
...  

Hepatorenal toxicities are an important side effect of anthracycline antibiotics. The objective of this study was to determine whether sesamin (Ses) protects against acute doxorubicin (DOX)-induced hepatorenal toxicities. Rats received daily treatment with either 0.5% carboxymethylcellulose (10 mL/kg) or Ses (10, 20 and 40 mg/kg) orally for 10 days, followed by an intravenous injection at day 8 of either saline (10 mL/kg) or DOX (20 mg/kg). Hepatorenal toxicity was assessed by measuring the levels of serum creatinine (Cre), blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP). The protein expression of 4-hydroxynonenal (4-HNE) in hepatorenal tissues was evaluated using immunohistochemistry. The malondialdehyde (MDA) content and antioxidant activity in the kidney and liver tissues were also measured. The results suggest that pretreatment with Ses ameliorated DOX-induced liver and kidney injury by lowering the serum ALT, AST, ALP, Cre and BUN levels ( p < 0.05 or p < 0.01), and the histological damage to the liver and kidney tissues induced by DOX compared to control were also significantly attenuated by Ses. Furthermore, Ses significantly decreased the DOX-induced increase of MDA and 4-HNE and increased the activity of CAT, SOD and GPX compared to the DOX-treated rats ( p < 0.05 or p < 0.01), whereas the change of DOX + Ses (10 mg/kg) group is not significant compared to the DOX-treated group ( p > 0.05). These findings indicate that Ses elicits a typical protective effect against DOX-induced acute hepatorenal toxicity via the suppression of oxidative stress.


2020 ◽  
Vol 48 (05) ◽  
pp. 1141-1157 ◽  
Author(s):  
Wei Li ◽  
Jian-Qiang Wang ◽  
Yan-Dan Zhou ◽  
Jin-Gang Hou ◽  
Ying Liu ◽  
...  

Oxidative stress is considered as a major factor in aging and exacerbates aging process through a variety of molecular mechanisms. D-galactose, a normal reducing sugar with high dose can cause the accumulation of reactive oxygen species (ROS) or stimulate free radical production indirectly by the formation of advanced glycation end products in tissues, finally resulting in oxidative stress. 20(R)-ginsenoside Rg3 (20(R)-Rg3), a major and representative component isolated from red ginseng (Panax ginseng C.A Meyer), has been shown to observably have an anti-oxidative effect. We thereby investigated the beneficial effects of 20(R)-Rg3 on D-galactose-induced oxidative stress injury and its underlying mechanisms. Our results showed that continuous injection of D-galactose with 800[Formula: see text]mg/kg/day for 8 weeks increased the levels of alanine aminotransferase (ALT) and blood urea nitrogen (BUN). However, such increases were attenuated by the treatment of 20(R)-Rg3 for 4 weeks. Meanwhile, 20(R)-Rg3 markedly inhibited D-galactose-caused oxidative stress in liver and kidney. The anti-oxidants, including catalase (CAT) and superoxide dismutase (SOD), were elevated in the mice from 20(R)-Rg3-treated group compared with that from D-galactose group. In contrast, a significant decrease in levels of cytochrome P450 E1 (CYP2E1) and the lipid peroxidation product malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were observed in the 20(R)-Rg3-treated group. These effects were associated with a significant increase of AGEs. More importantly, 20(R)-Rg3 effectively attenuated D-galactose induced apoptosis in liver and kidney via restoring the upstream PI3K/AKT signaling pathway. Taken together, our study suggests that 20(R)-Rg3 may be a novel and promising anti-oxidative therapeutic agent to prevent aging-related injuries in liver and kidney.


2021 ◽  
pp. 096032712110099
Author(s):  
F Sahindokuyucu-Kocasari ◽  
Y Akyol ◽  
O Ozmen ◽  
SB Erdemli-Kose ◽  
S Garli

Methotrexate (MTX) is a drug used in the treatment of various types of cancer and inflammatory diseases, but its clinical use has been restricted due to its toxicity. Apigenin (API) is an effective flavonoid with antioxidant and anti-inflammatory properties. The aim of this study was to determine the protective effect of API against MTX-induced liver and kidney toxicity. Four groups with 12 male mice each were used. The control and API groups were received 0.9% saline (ip) and API (3 mg/kg ip) for 4 days, respectively. The MTX group were given a single dose of MTX (20 mg/kg ip) on the fourth day. The MTX + API group were administered API for 7 days and then MTX on fourth day. Blood, liver and kidney were collected to evaluate tissue injury markers, oxidative stress biomarkers, and histopathological and immunohistochemical assessments. In MTX-treated group, significant increases in aminotransferases activities, creatinine and malondialdehyde (MDA) levels and significant decreases in catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase1 (SOD1) activities and glutathione (GSH) levels were determined compared to the control group. Furthermore, histopathological changes and significant increases in caspase-3, C-reactive protein (CRP), granulocyte colony-stimulating factor (G-CSF), and inducible nitric oxide synthase (iNOS) expressions were detected in both liver and kidney tissues of MTX-treated mice. Pretreatment with API alleviates liver and kidney toxicity by attenuating oxidative stress and tissue injury markers, histopathological alterations, and apoptosis and inflammation. These results suggest that API has a protective effect against oxidative stress and liver-kidney toxicity induced by MTX.


2016 ◽  
Vol 60 (4) ◽  
pp. 355-366 ◽  
Author(s):  
Aline Rodrigues da Silva ◽  
Cláudio Daniel Cerdeira ◽  
Anelise Rigoni Brito ◽  
Bruno Cesar Correa Salles ◽  
Gabriela Franzin Ravazi ◽  
...  

2021 ◽  
Author(s):  
Esmaeil Karami ◽  
Zahra Goodarzi ◽  
Ali Ghanbari ◽  
Ahmad Reza Bandegi ◽  
Sedighe Yosefi ◽  
...  

Abstract Purpose: Environmental and occupational exposure to cadmium chloride is known to cause nephrotoxicity linked with oxidative stress in humans and animals. This study used Atorvastatin to examine its effect on cadmium chloride-induced nephrotoxicity in rat model using biochemical and histological methodologies.Methods: Experiments were performed on 56 adult male Wistar rats (200 ±20 g), randomly assigned to eight groups. Atorvastatin was administered by oral for 15 days at 20 mg/kg/day, started 7 days before cadmium chloride intraperitoneal administration (1, 2, and 3 mg/kg) for eight days. On day 16, blood samples were collected, and kidneys were excised to evaluate the biochemical and histopathological changes.Cadmium chloride significantly increased malondialdehyde (MDA), serum creatinine (Cr), blood urea nitrogen (BUN), and decreased superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPx) levels. Results: Administration of Atorvastatin (20 mg/kg) significantly improved lipid peroxidation, glutathione and activities of antioxidant enzymes and significantly decreased BUN and Creatinine. Atorvastatin clearly improved the histological changes, demonstrating its protective role against Cadmium chloride-induced kidney injury.Conclusion: Treatment with Atorvastatin significantly improves all biochemical parameters and suggests a protecting role against cadmium chloride-induced oxidative stress and histological changes in rat kidney.


2008 ◽  
Vol 78 (45) ◽  
pp. 175-182 ◽  
Author(s):  
Masako Nakano ◽  
Natsumi Orimo ◽  
Nakako Katagiri ◽  
Masahito Tsubata ◽  
Jiro Takahashi ◽  
...  

In this study, the effect of dietary antioxidants, such as astaxanthin and Flavangenol®, and a combination of both, in counteracting oxidative stress in streptozotocin-induced diabetes was investigated. Streptozotocin-induced diabetic rats were divided into four groups: control, astaxanthin, Flavangenol, and combined astaxanthin and Flavangenol (mix group). Each group other than the control group was fed with an astaxanthin diet (0.1 g/kg), Flavangenol diet (2.0 g/kg), or an astaxanthin (0.1 g/kg)-Flavangenol (2.0 g/kg) mixture diet, respectively. After 12 weeks of feeding, the results showed that the lipid peroxide levels of plasma and lens and the plasma triglyceride (TG) level in the mix group were significantly decreased by 44%, 20%, and 20%, respectively, compared with the control group. In the mix group, lipid peroxidation was also significantly reduced by 70% in the liver and 20% in the kidney compared with the control group. Furthermore, the level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the mix group was significantly lower, 36%, than the control group. The α-tocopherol concentrations in the plasma, liver, and kidney in the astaxanthin and mix groups were significantly higher, 3-9 times, than in the control group. The degree of cataract formation in the Flavangenol and mix groups tended to be lower than the control group. These results indicate that the combination of astaxanthin with Flvangenol has an improved protective effect on oxidative stress associated with streptozotocin-induced diabetes than either agent used alone. Thus, this combination may be beneficial in preventing the progression of diabetic complications.


2020 ◽  
Vol 14 (1) ◽  
pp. 524-533
Author(s):  
Nora A. AlFaris ◽  
Ghedeir M. Alshammari ◽  
Muneer M. Alsayadi ◽  
Munirah A. AlFaris ◽  
Mohammed A. Yahya

Sign in / Sign up

Export Citation Format

Share Document