A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties

2003 ◽  
Vol 119-121 ◽  
pp. 432-437 ◽  
Author(s):  
Yongku Kang ◽  
Kwangjo Cheong ◽  
Kun-Ae Noh ◽  
Changjin Lee ◽  
Do-Young Seung
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isala Dueramae ◽  
Manunya Okhawilai ◽  
Pornnapa Kasemsiri ◽  
Hiroshi Uyama

AbstractZinc ionic conducting-based gel polymer electrolytes (GPEs) were fabricated from carboxymethyl cellulose (CMC) and three different zinc salts in a mass ratio ranging within 0–30 wt%. The effects of zinc salt and loading level on the structure, thermal, mechanical, mechanical stability, and morphological properties, as well as electrochemical properties of the GPEs films, were symmetrically investigated. The mechanical properties and mechanical stability of CMC were improved with the addition of zinc acetate, zinc sulphate, and zinc triflate, approaching the minimum requirement of a solid state membrane for battery. The maximum ionic conductivity of 2.10 mS cm−1 was achieved with the addition of 15 wt% zinc acetate (ZnA), GPEA15. The supported parameters, indicating the presence of the amorphous region that likely supported Zn2+ movement in the CMC chains, were clearly revealed with the increase in the number of mobile Zn2+ carriers in FT-IR spectra and the magnitude of ionic transference number, the decrease of the enthalpy of fusion in DSC thermogram, and the shifting to lower intensity of 2θ in XRD pattern. The developed CMC/ZnA complex-based GPEs are very promising for their high ionic conductivity as well as good mechanical properties and the ability for long-term utilization in a zinc ion battery.


2013 ◽  
Vol 334-335 ◽  
pp. 137-142 ◽  
Author(s):  
Lisani Othman ◽  
Khairul Bahiyah Md. Isa ◽  
Zurina Osman ◽  
Rosiyah Yahya

The gel polymer electrolytes (GPEs) composed of polymethylmethacrylate (PMMA) with lithium trifluoromethanesulfonate (LiCF3SO3) salt dissolved in a binary mixture of ethylene carbonate (EC) and propylene carbonate (PC) organic solvents have been prepared by the solution casting technique. The samples are prepared by varying the salt concentrations from 5 wt.% to 30 wt.%. Impedance spectroscopy measurement has been carried out to determine the ionic conductivity of the samples. The sample containing 25 wt.% of LiCF3SO3salt exhibits the highest room temperature ionic conductivity of 2.56 x 10-3S cm-1. The conductivity of the GPEs has been found to depend on the salt concentration added to the sample, while at higher salt concentration reveals a decrease in the ionic conductivity due to ions association. The temperature dependence of conductivity from 303 K to 373 K is found to obey the Arrhenius law. The ionic transference number,tiof GPEs has been estimated by the DC polarization method and the value is found to be 0.98, 0.93, and 0.97 for the sample containing 25 wt.%, 5 wt.% and 30 wt.% respectively. This result is consistent with the conductivity studies.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4115 ◽  
Author(s):  
Aimi Mahirah Zulkifli ◽  
Nur Izzah Aqilah Mat Said ◽  
Shujahadeen Bakr Aziz ◽  
Elham Mohammed Ali Dannoun ◽  
Shameer Hisham ◽  
...  

In the present work, phthaloyl chitosan (PhCh)-based gel polymer electrolytes (GPEs) were prepared using dimethylformamide (DMF) as a solvent, ethyl carbonate (EC) as a co-solvent, and a set of five quaternaries of potassium iodide (KI) as a doping salt, which is a mixed composition of iodine (I2). The prepared GPEs were applied to dye-sensitized solar cells (DSSC) to observe the effectiveness of the electrolyte, using mesoporous TiO2, which was sensitized with N3 dye as the sensitizer. The incorporation of the potassium iodide-based redox couple in a polymer electrolyte is fabricated for dye-sensitized solar cells (DSSCs). The number of compositions was based on the chemical equation, which is 1:1 for KI:I2. The electrical performance of prepared GPE systems have been assessed using electrical impedance spectroscopy (EIS), and dielectric permittivity. The improvement in the ionic conductivity of PhCh-based GPE was observed with the rise of salt concentration, and the maximum ionic conductivity (4.94 × 10−2 S cm−1) was achieved for the 0.0012 mol of KI:I2. The study of dielectric permittivity displays that ions with a high dielectric constant are associated with a high concentration of added ions. Furthermore, the gel polymer electrolyte samples were applied to DSSCs to detect the conversion effectiveness of the electrolytes. For electrolytes containing various content of KI:I2 the highest conversion efficiency (η%) of DSSC obtained was 3.57% with a short circuit current density (Jsc) of 20.33 mA cm−2, open-circuit voltage (Voc) of 0.37 V, fill factor (FF) of 0.47, as well as a conductivity of 2.08 × 10−2 S cm−1.


2020 ◽  
Vol 32 (2) ◽  
pp. 208-219
Author(s):  
CP Singh ◽  
PK Shukla ◽  
SL Agrawal

Ion conducting gel polymer electrolytes (GPEs) are being intensively studied for their potential applications in various electrochemical devices. The poly(vinyl alcohol)-based GPE films containing ammonium acetate (NH4CH3COO) salt have been studied for various concentrations of salt. The gel electrolyte films (GPEs) have been prepared using solution casting technique. Structural characterization carried out using X-ray diffraction reveals an increase in the amorphous nature of the samples on increasing salt concentration up to 70 wt%. The complexation of polymer and salt has been studied by Fourier-transform infrared analysis. Ionic conductivity of the GPEs has been found to increase with salt concentration and reaches an optimum for an intermediate concentration. The room temperature conductivity isotherm exhibits a maximum in conductivity of 2.64 × 10−4 Scm−1 for 65 wt% salt concentration. The temperature dependence of ionic conductivity exhibits a combination of Arrhenius and Vogel–Tamman–Fulcher behavior. Ion transport in the electrolyte system has been explored using dielectric response of the material and the observed variation in conductivity is suitably correlated to the change in charge carrier concentration and mobility of charge carriers.


2021 ◽  
Vol 1023 ◽  
pp. 21-26
Author(s):  
Gnanasubramaniam Menisha ◽  
J.H.T. Bandara Jayamaha ◽  
K. Vignarooban ◽  
Ganeshalingam Sashikesh ◽  
Kugamurthy Velauthamurthy ◽  
...  

Sodium-ion batteries (SIBs) as low-cost alternatives to expensive lithium-ion batteries become a hot R&D topic in the recent days due to the natural abundancy of sodium in the Earth’s crust and also in the oceans. As far as solid electrolytes for SIBs are concerned, larger size of Na+ ions compared to that of Li+ ions hinders the ionic mobility resulting to insufficient ionic conductivity for practical applications. Development of quasi-solid state gel-polymer electrolytes (GPEs) would be a feasible solution to overcome this challenge. In this work, we developed Poly (methyl methacrylate) (PMMA) based GPEs with six different compositions dissolved in EC:PC (ethylene carbonate and propylene carbonate, 1:1 wt%) mixture. Among six different GPE samples investigated by Electrochemical Impedance Spectroscopic and Raman Spectroscopic techniques, the best ambient temperature ionic conductivity of 4.2 mS cm-1 was obtained for 9PMMA:9NaPF6:41EC:41PC (wt%). Variation of ionic conductivity with inverse temperature showed Arrhenius behavior with almost constant activation energies. The best conducting GPE showed an activation energy of 0.14 eV. In the Raman spectra, very sharp crystalline peaks (400-850 cm-1 wave number range) of NaPF6 disappear in the gel state of the electrolytes confirming the non-crystalline nature of the GPEs. Boson modes remain almost constant in intensity for all the six different compositions. The best conducting GPE seems to be highly suitable for practical applications in SIBs as it has sufficient ambient temperature ionic conductivity.


Sign in / Sign up

Export Citation Format

Share Document