Enhancing the ionic conductivity and mechanical properties of zwitterionic polymer electrolytes by betaine-functionalized graphene oxide for high-performance and flexible supercapacitors

2021 ◽  
Vol 516 ◽  
pp. 230624
Author(s):  
Li-Hsiang Tseng ◽  
Po-Hsin Wang ◽  
Wei-Cheng Li ◽  
Chen-Hsueh Lin ◽  
Ten-Chin Wen
2021 ◽  
Author(s):  
HASHIM AL MAHMUD ◽  
, MATTHEW RADUE ◽  
WILLIAM PISANI ◽  
GREGORY ODEGARD

The impact on the mechanical properties of unidirectional carbon fiber (CF)/epoxy composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. The localized reinforcing effect of each of the graphene nanoplatelet types on the epoxy matrix is predicted at the nanoscale-level by molecular dynamics. The bulk-level mechanical properties of unidirectional CF/epoxy hybrid composites are predicted using micromechanics techniques considering the reinforcing function, content, and aspect ratios for each of the graphene nanoplatelets. In addition, the effect of nanoplatelets dispersion level is also investigated for the pristine graphene nanoplatelets considering a lower dispersion level with four layers of graphene nanoplatelets (4GNP). The results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.


2019 ◽  
Vol 7 (36) ◽  
pp. 20871-20877 ◽  
Author(s):  
Wei Jia ◽  
Peiyi Wu

High-performance NPGOM-CNF solid electrolytes with long-range 1D/2D ionic nanochannels for fuel cell applications.


2019 ◽  
Vol 31 (5) ◽  
pp. 557-569 ◽  
Author(s):  
Tong Sun ◽  
Huawei Zou ◽  
Ya Zhou ◽  
Rui Li ◽  
Mei Liang ◽  
...  

In this article, two types of functional graphene oxide (GO) with amine-rich surface were synthesized through chemically grafting two different molecular chain length trifunctional poly(oxypropylene)amines T5000 and T403, which were named as T5000-GO and T403-GO, respectively. The functionalized GO was then added to epoxy (EP) resin. Fourier transform infrared spectra analysis confirmed successful chemical functionalization on GO. Both T403-GO and T5000-GO were tightly embedded in the EP, because the amine-rich surface of functionalized-GO could form covalent bonds with the EP matrix, thereby contributing to the enhancement of mechanical properties. Particularly, T5000-GO, which has longer grafting molecule chains, achieved better compatibility and dispersibility in the EP matrix, resulting in a better reinforcing efficiency in mechanical properties. For example, the T5000-GO/EP composites showed an incremental enhancement in tensile strength with increasing filler concentrations, whereas their T403-GO/EP counterparts failed to follow the same trend. Meanwhile, the T5000-GO/EP composites with only 0.1-wt% T5000-GO achieved a prominent increase in flexural strength (approximately 50%) and flexural modulus (approximately 26.8%), which were higher than those of T403-GO-filled counterparts. This work indicated that the compatibility and interphase between GO and EP could be designed by manipulating the length of grafting molecule chains, thereby providing a better understanding of the relationship between the structure and mechanical properties of the graphene/EP nanocomposites.


2019 ◽  
Vol 48 (2) ◽  
pp. 478-485 ◽  
Author(s):  
Sangsoo Han ◽  
Wooyong Um ◽  
Won-Seok Kim

Bismuth-functionalized graphene oxide shows high performance in the removal of radioactive iodine.


Sign in / Sign up

Export Citation Format

Share Document