The effect of sheet steel strength on the fatigue strength of road wheel Masato Kurita, Nozomi Komatsubara (Sumitomo Metal Industries., Ltd.), Kiyozumi Asano, Masaru Sano (Kanai Motor Wheel Co., Ltd.), Yosiaki Nakazawa, Miyuki Yamamoto (Sumitomo Metal Industries., Ltd.)

JSAE Review ◽  
1996 ◽  
Vol 17 (4) ◽  
pp. 443
1982 ◽  
Vol 68 (9) ◽  
pp. 1444-1451 ◽  
Author(s):  
Masatoshi SHINOZAKI ◽  
Toshiyuki KATO ◽  
Toshio IRIE ◽  
Isao TAKAHASHI

Author(s):  
Moritz Braun ◽  
Adrian Kahl ◽  
Tom Willems ◽  
Marc Seidel ◽  
Claas Fischer ◽  
...  

Abstract It is well known that material properties undergo significant changes with temperature. In order to meet extreme environmental requirements for ships and offshore structures operating in Arctic regions, the effect of temperature on material behavior needs to be considered. In recent studies, significantly higher fatigue strength was observed for base materials and welded joints in comparison to room temperature. Fatigue strength increased even for temperatures far below the allowed service temperature based on fracture toughness results; however, sub-zero temperatures fatigue data is scarce and effects of steel strength and welding type on fatigue strength changes are unknown. Material selection for ships and offshore structures is typically based on empirical Charpy and fracture toughness relations at the design temperature, minus a safety margin. Thus, this study presents material test results including fatigue tests of butt-welded joints, tensile test, and Charpy impact toughness tests at room and sub-zero temperatures of different structural steel types. Additionally, the effect of welding techniques and steel strength are discussed. The results can be used to extend design approaches for ships and offshore structures subject to sub-zero temperatures and to improve material selection for ships and offshore structures operating in Arctic regions.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


1990 ◽  
Vol 2 (1) ◽  
pp. 239-257
Author(s):  
A. V. Clark ◽  
R. B. Thompson ◽  
Y. Li ◽  
R. C. Reno ◽  
G. V. Blessing ◽  
...  

Author(s):  
I. I. Lube ◽  
N. V. Trutnev ◽  
S. V. Tumashev ◽  
A. V. Krasikov ◽  
A. G. Ul’yanov ◽  
...  

At production of pipes of type 13Cr grade steel used at development of oil and gas deposits in areas with aggressive environment, intensive wear of instrument takes place, first of all, piercing mill mandrels. Factors, influencing the resistivity of the piercing mandrels considered, including chemical composition of the material, the mandrel is made of and its design. Based on industrial experience it was shown, that chrome content in the mandrel material practically does not affect on the increase of its resistivity, since the formed thin protective oxides having high melting temperature, are quickly failed and practically are not restored in the process of piercing. To increase the resistivity of piercing mandrels at production of casing tubes of type 13Cr grade steel, a work was accomplished to select a new material for their manufacturing. The chemical composition of steel presented, which was traditionally used for piercing mandrels manufacturing, as well as a steel grade proposed to increase their resistivity. First, molybdenum content was increased, which increases the characteristics of steel strength and ductility at high temperatures and results in grain refining. Second, tungsten content was also increased, which forms carbides in the steel resulting in an increase of its hardness and “red resistivity”, as well as in preventing grains growth during heating. Third, cobalt content was also increased, which increases heat resistivity and shock loads resistivity. The three elements increase enabled to increase the mandrels resistivity by two times. Results of mandrel test of steel 20ХН2МВ3КБ presented, the mandrel having corrugation on the working cone surface, which enabled to reach the resistivity growth to 12 passes without significant change of instrument cost. Microstructure of mandrels made of steels 20Х2Н4МФА and 20ХН2МВ3КБ shown. Application of the centering pin of special design was tested, which provided forming of a rounding edge on the front billet ends, eliminated undercut of mandrel external surface in the process of secondary billet grip and increase the service life of the piercing mill mandrels. At production of seamless pipes of martensite class type 13Cr stainless steels having L80 group of strength, an increase of piercing mandrel resistivity was reached by more than four times, which together with other technical solutions enabled to increase the hourly productivity of the hot rolling section of Volzhsky pipe plant ТПА 159-426 line by more than two times.


Sign in / Sign up

Export Citation Format

Share Document