A size-exclusion HPLC method for the determination of sodium chondroitin sulfate in pharmaceutical preparations

2003 ◽  
Vol 31 (6) ◽  
pp. 1229-1236 ◽  
Author(s):  
Don Woong Choi ◽  
Mi Jung Kim ◽  
Hee Sung Kim ◽  
Soo Hyun Chang ◽  
Gi Sook Jung ◽  
...  
2010 ◽  
Vol 93 (2) ◽  
pp. 549-555 ◽  
Author(s):  
Gamal Abdel Hafiz Mostafa ◽  
Mohamed Hefnawy ◽  
Abdulrahman Al-Majed

Abstract The construction and electrochemical response characteristics of polyvinylchloride (PVC) membrane sensors for donepezil HCl (DP) are described. The sensing membranes incorporated ion-association complexes of DP cation and sodium tetraphenyl borate (sensor 1), phosphomolybdic acid (sensor 2), or phosphotungstic acid (sensor 3) as electroactive materials. The sensors displayed a fast, stable, and near-Nernstian response over a relatively wide DP concentration range (1 102 to 1 106 M), with cationic slopes of 53.0, 54.0, and 51.0 mV/ concentration decade over a pH range of 4.0 to 8.0. The sensors showed good discrimination of DP from several inorganic and organic compounds. The direct determination of 2.54000.0 g/mL DP showed average recoveries of 99.0, 99.5, and 98.5, and mean RSDs of 1.6, 1.5, and 1.7 at 100.0 g/mL for sensors 1, 2, and 3, respectively. The proposed sensors have been applied for direct determination of DP in two pharmaceutical preparations. The results obtained for determination of DP in tablets using the proposed sensors compared favorably with those obtained using an HPLC method. The sensors have been used as indicator electrodes for potentiometric titration of DP.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 673
Author(s):  
Heba M. Hashem ◽  
Saad S. M. Hassan ◽  
Ayman H. Kamel ◽  
Abd El-Galil E. Amr ◽  
E. M. AbdelBary

A simple, efficient and reliable analytical method was developed and used for the determination of the fluvoxamine drug (FLV) in pharmaceutical preparations and biological fluids. The method is based on the cost-effective screen-printed platform for the potential transduction of the drug. Host-tailored molecular imprinting polymer (MIP) was integrated with the potentiometric platform as a recognition receptor, in which FLV, acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA) and acetonitrile were used as a template, functional monomer, cross-linker, and solvent, respectively. MIP particles were dispersed in plasticized poly (vinyl chloride) (PVC) and the membrane was drop-casted on carbon screen-printed electrode. The MIP, in addition to non-imprinted polymers (NIP), was characterized and the binding experiment revealed high affinity and adsorption capacity of MIP towards FLV. The proposed sensor displayed near-Nernstian cationic slope of 55.0 ± 0.8 mV/decade (r2 = 0.999) with a low detection limit of 4.8 × 10−6 mol/L over a wide pH range (3.0–8.5). The electrochemical features of the proposed sensors including electrochemical impedance spectroscopy (EIS) and chronopotentiometry measurements (CP) in the presence of multi-walled carbon nanotubes (MWCNTs) as a solid contact transducer were also investigated. The applications of the proposed sensor for the determination of FLV in different dosage forms with recovery values (98.8%–101.9%) and (97.4%–101.1%), respectively compared with the reference HPLC method with acceptedFandt-student tests values at the 95% confidence level.


2018 ◽  
Vol 16 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Asma Rahman ◽  
Mohammad Rashedul Haque ◽  
M Muhibur Rahman ◽  
Mohammad A Rashid

In the present study a rapid, accurate and precise chiral HPLC method was developed and validated for enantiomeric separation of racemate citalopram and escitalopram according to the guidelines of United States of Pharmacopeia (USP) and International Conference on Harmonization (ICH). The chiral chromatographic separation was achieved with ammonium acetate/ ethanol/ 2-propanol/ methylene dichloride (100 : 150 : 70 : 30, v/v) at a flow rate of 0.5 ml/min using a chiral CD-PH column. The HPLC analyses were monitored at 254 nm. The method showed a good linearity with regression coefficient (r2) of 0.998 in the range of 20.0-70.0 μg/ml for escitalopram. The detection limit (LOD), quantitation limit (LOQ) and average percentage of recovery for escitalopram were found to be 2.54, 7.68 μg/ml and 100.28% to 102.86%, respectively. The percentage of relative standard deviation (%RSD) for intra- and inter- day precision were found as 0.16% and 0.09%, respectively. The established method proved as reproducible with a %RSD value of less than 2 and having the robustness within specified limit. The present study also showed the enantiomeric purity or excess (%ee) of seven pharmaceutical preparations of escitalopram. Thus the proposed chiral method can be applied for the enantiomeric purity determination of escitalopram formulations.Dhaka Univ. J. Pharm. Sci. 16(2): 165-172, 2017 (December)


2016 ◽  
Vol 8 (8) ◽  
pp. 1858-1866 ◽  
Author(s):  
Fawzia Ibrahim ◽  
Mohie Khaled Sharaf El-Din ◽  
Rania Nabih El-Shaheny ◽  
Asmaa Kamal El-Deen ◽  
Kuniyoshi Shimizu

A new, simple isocratic HPLC method was developed and validated for the simultaneous estimation of four vasoactive phytochemicals: ascorbic acid (ASC), rutin (RUT), hesperidin (HSP), and diosmin (DSM) in different pharmaceutical preparations.


2007 ◽  
Vol 1174 ◽  
pp. 136-142 ◽  
Author(s):  
Kristin Gellein ◽  
Per M. Roos ◽  
Lars Evje ◽  
Olof Vesterberg ◽  
Trond Peder Flaten ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fahimeh Sadeghi ◽  
Latifeh Navidpour ◽  
Sima Bayat ◽  
Minoo Afshar

A green, simple, and stability-indicating RP-HPLC method was developed for the determination of diltiazem in topical preparations. The separation was based on a C18analytical column using a mobile phase consisted of ethanol: phosphoric acid solution (pH = 2.5) (35 : 65, v/v). Column temperature was set at 50°C and quantitation was achieved with UV detection at 240 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in diltiazem concentration range of 0.5–50 μg/mL (r2=0.9996). Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.25%–101.66%) ensured the accuracy of the developed method. The degradation products as well as the pharmaceutical excipients were well resolved from the pure drug. The expanded uncertainty (5.63%) of the method was also estimated from method validation data. Accordingly, the proposed validated and sustainable procedure was proved to be suitable for routine analyzing and stability studies of diltiazem in pharmaceutical preparations.


Author(s):  
Mohammad Anas Alfeen

This study presents a chromatographic analysis method for the determination of mefenamic acid in pharmaceutical preparations and treated wastewater from the pharmaceutical industry in East Asia and specifically (Syria). An isocratic RP-HPLC method has been developed for determination of Mefenamic acid on a Grace, alltima C18 column (250 x 4.6 mm, 5.0 μm) using a mobile phase consisting of (1%) Triethylamine aqueous buffer adjust pH = 2 by H3PO4 (85%): Methanol: Acetonitrile); (35: 20: 45 v\v\v %) at a flow rate of 2 mL/min. Detection was carried out at 220 nm. Retention time of Mefenamic acid was 7.85 ( ± 0.36) mins. The method was validated with respect to specificity, linearity, accuracy, precision, ruggedness, and robustness.  The proposed method is simple, precise, sensitive, and reproducible and is applicable for quantification of Mefenamic acid in Tablets formulations and Wastewater developed and formulated in our laboratory.


Sign in / Sign up

Export Citation Format

Share Document