Novel KE penetrator performance against a steel/ceramic/steel target at 0° over the velocity range 1800 to 2900 m/s

2001 ◽  
Vol 26 (1-10) ◽  
pp. 475-486 ◽  
Author(s):  
N.J. Lynch ◽  
S.J. Bless ◽  
C. Brissenden ◽  
D. Berry ◽  
B. Pedersen
Keyword(s):  
2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Philipp Umstätter ◽  
Herbert M. Urbassek

Abstract Fragmentation of granular clusters may be studied by experiments and by granular mechanics simulation. When comparing results, it is often assumed that results can be compared when scaled to the same value of $$E/E_{\mathrm{sep}}$$ E / E sep , where E denotes the collision energy and $$E_{\mathrm{sep}}$$ E sep is the energy needed to break every contact in the granular clusters. The ratio $$E/E_{\mathrm{sep}}\propto v^2$$ E / E sep ∝ v 2 depends on the collision velocity v but not on the number of grains per cluster, N. We test this hypothesis using granular-mechanics simulations on silica clusters containing a few thousand grains in the velocity range where fragmentation starts. We find that a good parameter to compare different systems is given by $$E/(N^{\alpha }E_{\mathrm{sep}})$$ E / ( N α E sep ) , where $$\alpha \sim 2/3$$ α ∼ 2 / 3 . The occurrence of the extra factor $$N^{\alpha }$$ N α is caused by energy dissipation during the collision such that large clusters request a higher impact energy for reaching the same level of fragmentation than small clusters. Energy is dissipated during the collision mainly by normal and tangential (sliding) forces between grains. For large values of the viscoelastic friction parameter, we find smaller cluster fragmentation, since fragment velocities are smaller and allow for fragment recombination. Graphic abstract


2021 ◽  
Author(s):  
Hai-hua Chen ◽  
Xian-feng Zhang ◽  
Lan-hong Dai ◽  
Chuang Liu ◽  
Wei Xiong ◽  
...  

2019 ◽  
Vol 75 (7) ◽  
pp. 614-620 ◽  
Author(s):  
R. H. Goulding ◽  
P. A. Piotrowicz ◽  
C. J. Beers ◽  
T. M. Biewer ◽  
J. F. Caneses ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 953-956
Author(s):  
Hao Chen ◽  
Gang Tao

In order to study dynamic response of metal, this paper makes use of theoretical formula to investigate changes of temperature and grain size on steel target after the penetration of copper jet based on data gathered from the experiments. Deformed target penetrated by copper jet could be divided into superplastic deformation zone and normal deformation zone according to the different microstructure. Temperature distribution of each deformation zones is in turn calculated by two constitutive equations. The results indicate that areas with high temperature concentrate on the narrow zone near the penetrated channel. Then, the calculation of grain size conforms to the observation. It is obviously proven that the method used in this paper is trustworthy for calculating the changes of temperature and grain size of target caused by penetration.


1995 ◽  
Vol 85 (3) ◽  
pp. 193-201 ◽  
Author(s):  
I. Martín-Gullón ◽  
A. Marcilla ◽  
R. Font ◽  
M. Asensio

2012 ◽  
Vol 8 (S287) ◽  
pp. 98-102
Author(s):  
Kazuhito Motogi ◽  
Kazuo Sorai ◽  
Kenta Fujisawa ◽  
Koichiro Sugiyama ◽  
Mareki Honma

AbstractThe water maser site associated with G353.273+0.641 is classified as a dominant blueshifted H2O maser, which shows an extremely wide velocity range (± 100 km s−1) with almost all flux concentrated in the highly blueshifted emission. The previous study has proposed that this peculiar H2O maser site is excited by a pole-on jet from high mass protostellar object. We report on the monitoring of 22-GHz H2O maser emission from G353.273+0.641 with the VLBI Exploration of Radio Astrometry (VERA) and the Tomakamai 11-m radio telescope. Our VLBI imaging has shown that all maser features are distributed within a very small area of 200 × 200 au2, in spite of the wide velocity range (> 100 km s−1). The light curve obtained by weekly single-dish monitoring shows notably intermittent variation. We have detected three maser flares during three years. Frequent VLBI monitoring has revealed that these flare activities have been accompanied by a significant change of the maser alignments. We have also detected synchronized linear acceleration (−5 km s−1yr−1) of two isolated velocity components, suggesting a lower-limit momentum rate of 10−3 M⊙ km s−1yr−1 for the maser acceleration. All our results support the previously proposed pole-on jet scenario, and finally, a radio jet itself has been detected in our follow-up ATCA observation. If highly intermittent maser flares directly reflect episodic jet-launchings, G353.273+0.641 and similar dominant blueshifted water maser sources can be suitable targets for a time-resolved study of high mass protostellar jet.


2021 ◽  
Author(s):  
Jose Cuervas-Mons ◽  
María José Domínguez-Cuesta ◽  
Félix Mateos-Redondo ◽  
Oriol Monserrat ◽  
Anna Barra

<p>In this work, the A-DInSAR techniques are applied in a mountainous area located in the Central South of Asturias (N Spain), where there are significant landslide and subsidence phenomena. The main aim of this study is detecting and analysing ground deformations associated to slope instabilities and subsidence processes. For this, 113 SAR images, provided by Sentinel-1A/B between January 2018 and February 2020, were acquired and processed by means of PSIG software (developed by the Geomatics Division of the CTTC). The results show a velocity range between -18.4 and 10.0 mm/year, and minimum and maximum accumulated ground displacements of -35.0 and 17.5 mm. This study has made possible to differentiate local sectors with recent deformation related to landslide incidence, urban/mining subsidence, and land recuperation due to aquifer recharge. This work corroborates the reliability and usefulness of the A-DInSAR processing as a powerful tool in the study and analysis of geological hazards on regional and local scales using Sentinel-1 data collection, showing also the high difficulty of processing mountainous areas with few urban sectors.</p>


Sign in / Sign up

Export Citation Format

Share Document