scholarly journals Human brain natriuretic peptide (B-type natriuretic peptide, BNP) in patients with various cardiac disease and in normal volunteers

1996 ◽  
Vol 27 (2) ◽  
pp. 132
Author(s):  
Hitome Tateyama ◽  
Kenji Kangawa ◽  
Naoto Minamino ◽  
H yuki tsuo ◽  
Nobuhisa Awata
Peptides ◽  
1992 ◽  
Vol 13 (1) ◽  
pp. 121-123 ◽  
Author(s):  
Kazuhiro Takahashi ◽  
Kazuhito Totsune ◽  
Masahiko Sone ◽  
Makoto Ohneda ◽  
Osamu Murakami ◽  
...  

1994 ◽  
Vol 86 (6) ◽  
pp. 723-730 ◽  
Author(s):  
B. M. Y. Cheung ◽  
J. E. C. Dickerson ◽  
M. J. Ashby ◽  
M. J. Brown ◽  
J. Brown

1. Brain natriuretic peptide, closely related to atrial natriuretic peptide in structure, may be an important circulating hormone. Its physiological role is unclear. First, we studied the effects of incremental infusions of brain natriuretic peptide in six healthy men on plasma brain natriuretic peptide levels and the pharmacokinetics of brain natriuretic peptide. Synthetic human brain natriuretic peptide-32 was infused intravenously, at an initial rate of 0.4 pmol min−1 kg−1, doubling every 15 min until the dose rate reached 6.4 pmol min−1 kg−1, at which rate the infusion was maintained for 30 min. 2. The brain natriuretic peptide infusion raised the brain natriuretic peptide-like immunoreactivity from 1.4 ± 0.5 pmol/l to 21.4 ± 7.6 pmol/l. Brain natriuretic peptide-like immunoreactivity after the end of infusion was consistent with a bi-exponential decay, with half-lives of 2.1 min and 37 min. 3. Next, we studied the effects of low-dose infusion of brain natriuretic peptide to mimic physiological increments in the circulating levels in comparison with atrial natriuretic peptide. Six dehydrated male subjects received intravenous infusions of atrial natriuretic peptide and brain natriuretic peptide, separately and in combination, in a randomized double-blind, placebo-controlled, four-part cross-over design. Atrial natriuretic peptide and brain natriuretic peptide were given at the rate of 0.75 and 0.4 pmol min−1 kg−1, respectively, for 3 h. The control infusion consisted of the vehicle. 4. Analysis of variance showed that atrial natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide, but not brain natriuretic peptide alone, increased urinary flow and decreased urinary osmolality significantly. However, urinary sodium excretion was significantly increased by atrial natriuretic peptide, brain natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide. 5. None of the four infusates significantly altered the blood pressure, heart rate or glomerular filtration rate. 6. This study showed, for the first time, that physiological increments in brain natriuretic peptide, like those in atrial natriuretic peptide, are natriuretic. Although atrial natriuretic peptide and brain natriuretic peptide do not appear to interact synergistically, they are likely to act in concert in the physiological regulation of sodium balance.


2016 ◽  
Vol 19 (2) ◽  
pp. 216-223 ◽  
Author(s):  
Autumn N Harris ◽  
Amara H Estrada ◽  
Alexander E Gallagher ◽  
Brandy Winter ◽  
Kenneth E Lamb ◽  
...  

Objectives The biologic variability of N-terminal pro-brain natriuretic peptide (NT-proBNP) and its impact on diagnostic utility is unknown in healthy cats and those with cardiac disease. The purpose of this study was to determine the biologic variation of NT-proBNP within-day and week-to-week in healthy adult cats. Methods Adult cats were prospectively evaluated by complete blood count (CBC), biochemistry, total thyroxine, echocardiography, electrocardiography and blood pressure, to exclude underlying systemic or cardiac disease. Adult healthy cats were enrolled and blood samples were obtained at 11 time points over a 6 week period (0, 2 h, 4 h, 6 h, 8 h, 10 h and at weeks 2, 3, 4, 5 and 6). The intra-individual (coefficient of variation [CVI]) biologic variation along with index of individuality and reference change values (RCVs) were calculated. Univariate models were analyzed and included comparison of the six different time points for both daily and weekly samples. This was followed by a Tukey’s post-hoc adjustment, with a P value of <0.05 being significant. Results The median daily and weekly CVI for the population were 13.1% (range 0–28.7%) and 21.2% (range 3.9–68.1%), respectively. The index of individuality was 0.99 and 1 for daily and weekly samples, respectively. The median daily and weekly RCVs for the population were 39.8% (range 17.0–80.5%) and 60.5% (range 20.1–187.8%), respectively. Conclusions and relevance This study demonstrates high individual variability for NT-proBNP concentrations in a population of adult healthy cats. Further research is warranted to evaluate NT-proBNP variability, particularly how serial measurements of NT-proBNP may be used in the diagnosis and management of cats with cardiac disease.


2005 ◽  
Vol 15 (4) ◽  
pp. 396-401 ◽  
Author(s):  
Thomas S. Mir ◽  
Jan Falkenberg ◽  
Bernd Friedrich ◽  
Urda Gottschalk ◽  
Throng Phi Lê ◽  
...  

Objective:To evaluate the role of the concentration of brain natriuretic peptide in the plasma, and its correlation with haemodynamic right ventricular parameters, in children with overload of the right ventricle due to congenital cardiac disease.Methods:We studied 31 children, with a mean age of 4.8 years, with volume or pressure overload of the right ventricle caused by congenital cardiac disease. Of the patients, 19 had undergone surgical biventricular correction of tetralogy of Fallot, 11 with pulmonary stenosis and 8 with pulmonary atresia, and 12 patients were studied prior to operations, 7 with atrial septal defects and 5 with anomalous pulmonary venous connections. We measured brain natriuretic peptide using Triage®, from Biosite, United States of America. We determined end-diastolic pressures of the right ventricle, and the peak ratio of right to left ventricular pressures, by cardiac catheterization and correlated them with concentrations of brain natriuretic peptide in the plasma.Results:The mean concentrations of brain natriuretic peptide were 87.7, with a range from 5 to 316, picograms per millilitre. Mean end-diastolic pressure in the right ventricle was 5.6, with a range from 2 to 10, millimetres of mercury, and the mean ratio of right to left ventricular pressure was 0.56, with a range from 0.24 to 1.03. There was a positive correlation between the concentrations of brain natriuretic peptide and the ratio of right to left ventricular pressure (r equal to 0.7844, p less than 0.0001) in all patients. These positive correlations remained when the children with tetralogy of Fallot, and those with atrial septal defects or anomalous pulmonary venous connection, were analysed as separate groups. We also found a weak correlation was shown between end-diastolic right ventricular pressure and concentrations of brain natriuretic peptide in the plasma (r equal to 0.5947, p equal to 0.0004).Conclusion:There is a significant correlation between right ventricular haemodynamic parameters and concentrations of brain natriuretic peptide in the plasma of children with right ventricular overload due to different types of congenital cardiac disease. The monitoring of brain natriuretic peptide may provide a non-invasive and safe quantitative follow up of the right ventricular pressure and volume overload in these patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xianyong Liao ◽  
Lin Qian ◽  
Song Zhang ◽  
Xiang Chen ◽  
Jing Lei

Objectives. (1) To conduct a network meta-analysis of clinical drugs used for cardiogenic shock and (2) provide evidence for the selection of medication for the treatment of this condition. Methods. PubMed, EMBASE, Cochrane library, China HowNet (CNKI), Wanfang database, and Weipu database were searched using keywords Dopamine, Dobutamine, Epinephrine, Adrenaline, Norepinephrine, Noradrenaline, Milrinone, Natriuretic peptide, Recombinant human brain natriuretic peptide, Levosimendan, Cardiac shock, and Cardiogenic shock. We select literature according to prespecified inclusion and exclusion criteria and record data such as drug type, mortality, and adverse reactions. Results. Twenty-eight of 1387 articles met inclusion criteria, comprising 1806 patients who suffered from cardiogenic shock. Dopamine, dobutamine, epinephrine, norepinephrine, milrinone, recombinant human brain natriuretic peptide, and levosimendan were all commonly used in the treatment of cardiogenic shock. Milrinone was most effective at reducing mortality and had the lowest incidence of adverse reactions. Conclusion. This network meta-analysis demonstrated that milrinone was the most effective medication at reducing mortality and adverse events in patients suffering from cardiogenic shock.


2020 ◽  
Vol 81 ◽  
pp. 106280
Author(s):  
Nan Li ◽  
Er-Fei Zhang ◽  
Jing Zhang ◽  
Li Zhang ◽  
Yun-En Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document