The effects of estrogen and progesterone on prostaglandins and integrin beta 3 (β3) subunit expression in primary cultures of bovine endometrial cells

2003 ◽  
Vol 25 (2) ◽  
pp. 141-154 ◽  
Author(s):  
Sarah Kimmins ◽  
Hai Choo Lim ◽  
Julie Parent ◽  
Michel A. Fortier ◽  
Leslie A. MacLaren
2004 ◽  
Vol 92 (3) ◽  
pp. 1718-1727 ◽  
Author(s):  
Pavel I. Ortinski ◽  
Congyi Lu ◽  
Kentaroh Takagaki ◽  
Zhanyan Fu ◽  
Stefano Vicini

Distinct α subunit subtypes in the molecular assembly of GABAA receptors are a critical determinant of the functional properties of inhibitory synapses and their modulation by a range of pharmacological agents. We investigated the contribution of these subunits to the developmental changes of inhibitory synapses in cerebellar granule neurons in primary cultures from wild-type and α1 subunit −/− mice. The decay time of miniature inhibitory postsynaptic currents (mIPSCs) halved between 6 days in vitro (DIV6) and DIV12. This was paralleled by the decrease of α2 and α3 subunits, the increase of α1 and α6 subunits expression at synapses, and changes in the action of selective α subunit modulators. A small but significant shortening of mIPSCs was observed with development in cells from −/− mice together with a decrease in the expression of α3 subunit. In contrast, the expression of α2 subunit at inhibitory synapses in −/− cells was significantly higher than in +/+ cells at DIV11-12. α5 subunit was not detected, and increased sensitivity to a selective α4/α6 subunit agonist suggests increased expression of extrasynaptic receptors in −/− mice. β2/β3 subunit expression and loreclezole sensitivity increased with development in +/+ but not in −/− cells, supporting the preferential association of the α1 with the β2 subunit. Synaptic charge transfer strongly decreased with development but was not different between cells in the +/+ and −/− groups until DIV11-12. Our results uncover a pattern of sequential expression of α subunits underlying the changes in functional efficacy of GABAergic networks with development.


2000 ◽  
Vol 53 (6) ◽  
pp. 801-806 ◽  
Author(s):  
Xun Mei ◽  
Andrew J Sweatt ◽  
James A Hammarback

2020 ◽  
Vol 32 (2) ◽  
pp. 151
Author(s):  
J. Cabezas ◽  
D. Rojas ◽  
B. Melo-Baez ◽  
M. Gutierrez ◽  
F. Castro ◽  
...  

The success of development of invitro embryo production needs to mimic culture conditions in the maternal environment. Recently, it has been seen that extracellular vesicles (EVs) secreted by oviducal or endometrial cells may improve development and quality of embryos produced invitro. Extracellular vesicles are a mechanism of cellular communication; they carry molecules that are delivered into the target cells changing gene expression and function. Due to the size range and characteristics of EVs, they require specific methods for purification and characterisation. However, the possible contamination with other nanoparticles and their effect on embryo development have not been considered. Based on that, the goal of this work was to evaluate the effect on invitro bovine embryo development, of the addition to culture medium EVs secreted by oviducal and endometrial cells and isolated by centrifugation and concentrates with Amicon filters. For this purpose, cells were isolated from bovine oviduct and endometrium collected in local abattoir and primary cultures of epithelial and stromal cells were derived. The primary cultures from both sources were exposed or not to progesterone (P4; 15ngmL−1) for 4 days and then cultured for 24h in EV depleted media. The supernatant was harvested and EVs were isolated by serial centrifugations and subsequently concentrated by a 100 kDa Amicon filter system. The isolated EVs were characterised by transmission electron microscopy, nanoparticle tracking analysis, and flow cytometry. Oocytes were obtained from ovaries collected in the abattoir. The cumulus-oocyte complexes were matured invitro for 22h and subsequently fertilised for 18h. Presumptive zygotes were invitro cultured in synthetic oviducal fluid with EVs (1000ngmL−1 of total proteins) or not according to experimental group (1: EVs− (control); 2: EVs−OP4+; 3: EVs−OP4−; 4: EVs−EP4+ and 4: EVs−EP4−). Embryos were cultured for 7 days in 5% CO2, 5% O2, and 90% N2 (25 embryos/well in 4-well plates). At Day 7, embryo development was evaluated considering the blastocyst yield. Transmission electron microscopy showed typical structures and morphology of EVs and they were positive for CD9, CD63, and CD81 markers, and negative for CD40. According to nanoparticle tracking analysis, the mean size of EVs was 160±62nm and concentration of 3.29×1011 particlesmL−1 for oviducal and endometrial cells, respectively. A significant reduction of blastocyst rate was observed when embryos were cultured with cell-derived EVs; control: 152/44 (28.9%) vs. treatments with EVs; OP4+: 74/3 (4.1%), OP4−:76/2 (2.6%), EP4+: 74/6 (8.1%), and EP4−: 73/2 (2.7%) (P ≤ 0.01). Our results indicate that the use of nanoparticles, including EVs, isolated from cells of oviduct or endometrium, has a blocking effect on embryonic development and compromises the performance of blastocysts on Day 7 when used at concentrations of 1000ngmL−1 total protein, independent of the use or not of P4 and the source. These data provide insights regarding the use and protocols of acquiring exosomes for embryo supplementation. This research was supported by FONDECYT, Chile-1170310.


1986 ◽  
Vol 127 (1) ◽  
pp. 61-72 ◽  
Author(s):  
David J. Orlicky ◽  
Rita Lieberman ◽  
Cheryll Williams ◽  
L. E. Gerschenson

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1013
Author(s):  
Joanna Tkaczuk-Włach ◽  
Witold Kędzierski ◽  
Ilona Jonik ◽  
Ilona Sadok ◽  
Agata Filip ◽  
...  

Background: Immune modulatory factors like indoleamine 2,3-dioxygenase 1 (IDO1) generating kynurenine (Kyn) and receptor for advanced glycation end-products (RAGE) contribute to endometrial and cancer microenvironment. Using adequate experimental models is needed to learn about the significance of these molecular factors in endometrial biology. In this paper we study IDO1 activity and RAGE expression in the in vitro cultured primary human endometrial cells derived from cancerous and noncancerous tissue. Methods: The generated primary cell cultures from cancer and noncancerous endometrial tissues were characterized using immunofluorescence and Western Blot for expression of endometrial and cancer markers. IDO1 activity was studied by Kyn quantification with High Performance Liquid Chromatography with Diode Array Detector. Results: The primary cultures of endometrial cells were obtained with 80% success rate and no major genetic aberrations. The cells retained in vitro expression of markers (mucin MUC1 and HER2) or immunomodulatory factors (RAGE and IDO1). Increased Kyn secretion was associated with cancer endometrial cell culture in contrast to the control one. Conclusions: Primary endometrial cells express immune modulatory factors RAGE and IDO1 in vitro associated with cancer phenotype of endometrium.


2009 ◽  
Vol 39 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Nadéra Mansouri-Attia ◽  
Julie Aubert ◽  
Pierrette Reinaud ◽  
Corinne Giraud-Delville ◽  
Géraldine Taghouti ◽  
...  

At implantation the endometrium undergoes modifications necessary for its physical interactions with the trophoblast as well as the development of the conceptus. We aim to identify endometrial factors and pathways essential for a successful implantation in the caruncular (C) and the intercaruncular (IC) areas in cattle. Using a 13,257-element bovine oligonucleotide array, we established expression profiles at day 20 of the estrous cycle or pregnancy (implantation), revealing 446 and 1,295 differentially expressed genes (DEG) in C and IC areas, respectively (false discovery rate = 0.08). The impact of the conceptus was higher on the immune response function in C but more prominent on the regulation of metabolism function in IC. The C vs. IC direct comparison revealed 1,177 and 453 DEG in cyclic and pregnant animals respectively (false discovery rate = 0.05), with a major impact of the conceptus on metabolism and cell adhesion. We selected 15 genes including C11ORF34, CXCL12, CXCR4, PLAC8, SCARA5, and NPY and confirmed their differential expression by quantitative RT-PCR. The cellular localization was analyzed by in situ hybridization and, upon pregnancy, showed gene-specific patterns of cell distribution, including a high level of expression in the luminal epithelium for C11ORF34 and MX1. Using primary cultures of bovine endometrial cells, we identified PTN, PLAC8, and CXCL12 as interferon-τ (IFNT) target genes and MSX1 and CXCR7 as IFNT-regulated genes, whereas C11ORF34 was not an IFNT-regulated gene. Our transcriptomic data provide novel molecular insights accounting for the biological functions related to the C or IC endometrial areas and may contribute to the identification of potential biomarkers for normal and perturbed early pregnancy.


Sign in / Sign up

Export Citation Format

Share Document