Temperature and pressure field visualizations in a porous medium dried in superheated steam

1997 ◽  
Vol 15 (4) ◽  
pp. 359-374 ◽  
Author(s):  
F. Topin ◽  
O. Rahli ◽  
H. Tadrist
2005 ◽  
Vol 40 (4) ◽  
pp. 600-612 ◽  
Author(s):  
L. A. Nasyrova ◽  
I. R. Rakhmatullin ◽  
V. Sh. Shagapov

2015 ◽  
pp. 693-712 ◽  
Author(s):  
A.I. Filippov ◽  
O.V. Akhmetova ◽  
M.R. Gubajdullin
Keyword(s):  

2021 ◽  
Vol 345 ◽  
pp. 00015
Author(s):  
Matěj Jeřábek ◽  
Michal Volf ◽  
Daniel Duda

The article describes a numerical simulation of flow in the cooling system of an electromagnetic calorimeter by analysing the temperature and pressure fields. Two fundamentally different approaches were used to analyse the pressure field - analytical 1D calculation and numerical 3D flow simulation. The article contains a detailed evaluation and description of individual analyses using the commercial software ANSYS 2020 R1.


2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 185 ◽  
Author(s):  
Zhenzhen Jia ◽  
Qing Ye ◽  
Haizhen Wang ◽  
He Li ◽  
Shiliang Shi

Porous medium burners are characterized by high efficiency and good stability. In this study, a new burner was proposed based on the combustion mechanism of the methane-air mixture in the porous medium and the preheating effect. The new burner is a two-section and double-deck porous medium with gas inlets at both ends. A mathematical model for the gas mixture combustion in the porous medium was established. The combustion performance of the burner was simulated under different equivalence ratios and inlet velocities of premixed gas. The methane combustion degree, as well as the temperature and pressure distribution, was estimated. In addition, the concentrations of emissions of NOx for different equivalence ratios were investigated. The results show that the new burner can not only realize sufficient combustion but also save energy. Furthermore, the emission concentration of NOx is very low. This study provides new insights into the industrial development and application of porous medium combustion devices.


Solid Earth ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 223-240 ◽  
Author(s):  
Xin Zhong ◽  
Evangelos Moulas ◽  
Lucie Tajčmanová

Abstract. Residual pressure can be preserved in mineral inclusions, e.g. quartz-in-garnet, after exhumation due to differential expansion between inclusion and host crystals. Raman spectroscopy has been applied to infer the residual pressure and provides information on the entrapment temperature and pressure conditions. However, the amount of residual pressure relaxation cannot be directly measured. An underestimation or overestimation of residual pressure may lead to significant errors between calculated and actual entrapment pressure. This study focuses on three mechanisms responsible for the residual pressure modification: (1) viscous creep; (2) plastic yield; (3) proximity of inclusion to the thin-section surface. Criteria are provided to quantify how much of the expected residual pressure is modified due to these three mechanisms. An analytical solution is introduced to demonstrate the effect of inclusion depth on the residual pressure field when the inclusion is close to the thin-section surface. It is shown that for a quartz-in-garnet system, the distance between the thin-section surface and inclusion centre needs to be at least 3 times the inclusion radius to avoid pressure release. In terms of viscous creep, representative case studies on a quartz-in-garnet system show that viscous relaxation may occur from temperatures as low as 600–700 ∘C depending on the particular pressure–temperature (P–T) path and various garnet compositions. For quartz entrapped along the prograde P–T path and subject to viscous relaxation at peak T above 600–700 ∘C, its residual pressure after exhumation may be higher than predicted from its true entrapment conditions. Moreover, such a viscous resetting effect may introduce apparent overstepping of garnet nucleation that is not related to reaction affinity.


2019 ◽  
Vol 14 (1) ◽  
pp. 59-62
Author(s):  
M.N. Zapivakhina ◽  
D.A Umerov

The problem of ice formation in a dry, cold, porous medium saturated with ice and gas (air) when pumping warm water is considered in a flat one-dimensional self-similar formulation. The task was considered in volume area. During the injection of warm water from the beginning deep into the reservoir, it spread in a volume region that will divide the reservoir into 3 zones. The first zone was filled with water, the second zone was filled with ice and water, and the third zone was filled with ice and gas. To describe the process of heat and mass transfer, the following hypotheses were used: the temperature of the saturated substance (water, ice or gas) is equal to the temperature of the porous medium; ice and skeleton still; water, ice and skeleton of the reservoir are incompressible; skeletal porosity is constant. On the basis of constructed self-similar solutions, a numerical analysis was performed illustrating the effect of the initial parameters of a dry porous medium saturated with ice and gas, as well as the temperature of the injected water on the temperature and pressure distribution in the porous medium. It has been established that an increase in the temperature of the injected water does not lead to a significant increase in the area of ice decomposition. It is also established that if the pressure of the injected water is increased, this will not lead to a large increase in the area of ice decomposition. However, based on the results obtained, it can be seen that the speed of movement of the melting boundary increases, in particular, as the pressure increases by <i>p<sub>e</sub></i>=0.05 MPa, the intermediate region increases by one and a half times. It was found that it is economically more profitable to pump water with a lower temperature, because water with a higher temperature slightly increases the freezing area of the porous soil.


Author(s):  
Jie Zheng ◽  
Yihua Dou ◽  
Zhenzhen Li ◽  
Xin Yan ◽  
Yarong Zhang ◽  
...  

AbstractWith the development of gas well exploitation, the calculation of wellbore with single-phase state affected by single factor cannot meet the actual needs of engineering. We need to consider the simulation calculation of complex wellbore environment under the coupling of multiphase and multiple factors, so as to better serve the petroleum industry. In view of the problem that the commonly used temperature and pressure model can only be used for single-phase state under complex well conditions, and the error is large. Combined with the wellbore heat transfer mechanism and the calculation method of pipe flow pressure drop gradient, this study analyzes the shortcomings of Ramey model and Hassan & Kabir model through transient analysis. Based on the equations of mass conservation, momentum conservation and energy conservation, and considering the interaction between fluid physical parameters and temperature and pressure, the wellbore pressure coupling model of water-bearing gas well is established, and the Newton Raphael iterative method is used for MATLAB programming. On this basis, the relationship between tubing diameter, gas production, gas–water ratio, and wellbore temperature field and pressure field in high water-bearing gas wells is discussed. The results show that the wellbore temperature pressure coupling model of high water-bearing gas well considering the coupling of gas–liquid two-phase flow wellbore temperature pressure field has higher accuracy than Ramey model and Hassan & Kabir model, and the minimum coefficients of variation of each model are 0.022, 0.037 and 0.042, respectively. Therefore, the model in this study is highly consistent with the field measured data. Therefore, the findings of this study are helpful to better calculate the wellbore temperature and pressure parameters under complex well conditions.


Sign in / Sign up

Export Citation Format

Share Document