Differential Regulation of the AP-1 Family Members by UV Irradiation In Vitro and In Vivo

1998 ◽  
Vol 10 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Kirsi Isoherranen ◽  
Jukka Westermarck ◽  
Veli-Matti Kähäri ◽  
Christer Jansén ◽  
Kari Punnonen
2006 ◽  
Vol 398 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Yukiko Mizutani ◽  
Akio Kihara ◽  
Yasuyuki Igarashi

The LASS (longevity assurance homologue) family members are highly conserved from yeasts to mammals. Five mouse and human LASS family members, namely LASS1, LASS2, LASS4, LASS5 and LASS6, have been identified and characterized. In the present study we cloned two transcriptional variants of hitherto-uncharacterized mouse LASS3 cDNA, which encode a 384-amino-acid protein (LASS3) and a 419-amino-acid protein (LASS3-long). In vivo, [3H]dihydrosphingosine labelling and electrospray-ionization MS revealed that overproduction of either LASS3 isoform results in increases in several ceramide species, with some preference toward those having middle- to long-chain-fatty acyl-CoAs. A similar substrate preference was observed in an in vitro (dihydro)ceramide synthase assay. These results indicate that LASS3 possesses (dihydro)ceramide synthesis activity with relatively broad substrate specificity. We also found that, except for a weak display in skin, LASS3 mRNA expression is limited almost solely to testis, implying that LASS3 plays an important role in this gland.


2018 ◽  
Vol 10 (4) ◽  
pp. 306-314 ◽  
Author(s):  
Scott A. Lindsay ◽  
Samuel J.H. Lin ◽  
Steven A. Wasserman

The Bomanins (Boms) are a family of a dozen secreted peptides that mediate the innate immune response governed by the Drosophila Toll receptor. We recently showed that deleting a cluster of 10 Bom genes blocks Toll-mediated defenses against a range of fungi and gram-positive bacteria. Here, we characterize the activity of individual Bom family members. We provide evidence that the Boms overlap in function and that a single Bom gene encoding a mature peptide of just 16 amino acids can act largely or entirely independent of other family members to provide phenotypic rescue in vivo. We further demonstrate that the Boms function in Drosophila humoral immunity, mediating the killing of the fungal pathogen Candida glabrata in an in vitro assay of cell-free hemolymph. In addition, we find that the level of antifungal activity both in vivo and in vitro is linked to the level of Bom gene expression. Although Toll dictates expression of the antimicrobial peptides (AMPs) drosomycin and metchnikowin, we find no evidence that Boms act by modifying the expression of the mature forms of these antifungal AMPs.


2008 ◽  
Vol 100 (05) ◽  
pp. 847-856 ◽  
Author(s):  
Brenda R. Temple ◽  
Holly R. Gentry ◽  
Jan C. DeNofrio ◽  
Weiping Yuan ◽  
Leslie V. Parise

SummaryPlatelet aggregation requires activation of the αIIbβ3 integrin,an event regulated by the integrin cytoplasmic tails. CIB1 binds to the cytoplasmic tail of the integrin αIIb subunit. Previous overexpression and knockdown studies in murine megakaryocytes demonstrated that CIB1 inhibits integrin αIIbβ3 activation.Here we analyzed Cib1-/- mice to determine the function of CIB1 in platelets in vitro and in vivo. We found that although these mice had no overt platelet phenotype, mRNA level of CIB1 homolog CIB3 was increased in Cib1-/- megakaryocytes. In vitro binding experiments showed that recombinant CIB1, -2 and -3 bound specifically to an αIIb cytoplasmic tail peptide. Subsequent protein modeling experiments indicated that CIBs 1–3 each have a highly conserved hydrophobic binding pocket. Therefore, the potential exists for compensation for the loss of CIB1 by these CIB family members, thereby preventing pathologic thrombus formation in Cib1-/- mice.


2013 ◽  
Vol 57 (6) ◽  
pp. 1055-1066 ◽  
Author(s):  
Birgit M. Dietz ◽  
Ghenet K. Hagos ◽  
Jillian N. Eskra ◽  
Gihani T. Wijewickrama ◽  
Jeffrey R. Anderson ◽  
...  

Oncogene ◽  
2000 ◽  
Vol 19 (42) ◽  
pp. 4855-4863 ◽  
Author(s):  
Jean-Marie Bruey ◽  
Catherine Paul ◽  
Annie Fromentin ◽  
Sophie Hilpert ◽  
André-Patrick Arrigo ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1118 ◽  
Author(s):  
Elisabeth Smolle ◽  
Nicole Fink-Neuboeck ◽  
Joerg Lindenmann ◽  
Freyja Smolle-Juettner ◽  
Martin Pichler

Carcinogenic mutations allow cells to escape governing mechanisms that commonly inhibit uncontrolled cell proliferation and maintain tightly regulated homeostasis between cell death and survival. Members of the inhibition of growth (ING) family act as tumor suppressors, governing cell cycle, apoptosis and cellular senescence. The molecular mechanism of action of ING genes, as well as their anchor points in pathways commonly linked to malignant transformation of cells, have been studied with respect to a variety of cancer specimens. This review of the current literature focuses specifically on the action mode of ING family members in lung cancer. We have summarized data from in vitro and in vivo studies, highlighting the effects of varying levels of ING expression in cancer cells. Based on the increasing insight into the function of these proteins, the use of ING family members as clinically useful biomarkers for lung cancer detection and prognosis will probably become routine in everyday clinical practice.


2009 ◽  
Vol 186 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Delphine Mérino ◽  
Maybelline Giam ◽  
Peter D. Hughes ◽  
Owen M. Siggs ◽  
Klaus Heger ◽  
...  

Proteins of the Bcl-2 family are critical regulators of apoptosis, but how its BH3-only members activate the essential effectors Bax and Bak remains controversial. The indirect activation model suggests that they simply must neutralize all of the prosurvival Bcl-2 family members, whereas the direct activation model proposes that Bim and Bid must activate Bax and Bak directly. As numerous in vitro studies have not resolved this issue, we have investigated Bim's activity in vivo by a genetic approach. Because the BH3 domain determines binding specificity for Bcl-2 relatives, we generated mice having the Bim BH3 domain replaced by that of Bad, Noxa, or Puma. The mutants bound the expected subsets of prosurvival relatives but lost interaction with Bax. Analysis of the mice showed that Bim's proapoptotic activity is not solely caused by its ability to engage its prosurvival relatives or solely to its binding to Bax. Thus, initiation of apoptosis in vivo appears to require features of both models.


1994 ◽  
Vol 303 (2) ◽  
pp. 499-506 ◽  
Author(s):  
C C H Li ◽  
M Korner ◽  
D K Ferris ◽  
E Chen ◽  
R M Dai ◽  
...  

We performed radioimmunoprecipitation followed by serial immunoblots to show that, in the unstimulated Jurkat T cell line, the NF-kappa B/Rel family proteins, p80-c-Rel, p105-NF-kappa B, p65-NF-kappa B, p50-NF-kappa B and p36-I kappa B alpha, can be detected as complexes using antisera against c-Rel, p105-NF-kappa B or p65-NF-kappa B. p36-I kappa B alpha and p105, both known inhibitors of NF-kappa B function, can physically associate with NF-kappa B/Rel family members, but not with each other. In vivo and in vitro phosphorylation experiments demonstrated that NF-kappa B/Rel family members, including p105, c-Rel, p50, p65 (for the first time for p50 and p65) and p36-I kappa B alpha are also phosphoproteins. Phosphoserine and phosphothreonine residues were identified in these proteins isolated from unstimulated Jurkat cells. Both unphosphorylated and hyperphosphorylated forms of p36-I kappa B alpha were found in the complexes, suggesting that hyperphosphorylated I kappa B alpha is still capable of associating with the NF-kappa B/Rel family members. After stimulation with phorbol 12-myristate 13-acetate and phytohaemagglutinin for 10 min, p105-NF-kappa B and p50-NF-kappa B, but not p36-I kappa B, were highly phosphorylated. Phosphopeptide mapping of p105 showed that phorbol ester/phytohaemagglutinin stimulation may change p105 phosphorylation qualitatively.


Sign in / Sign up

Export Citation Format

Share Document