A new dual-porosity/dual-permeability model with non-Darcian flow through fractures

1997 ◽  
Vol 17 (3-4) ◽  
pp. 331-344 ◽  
Author(s):  
E.S. Choi ◽  
T. Cheema ◽  
M.R. Islam
Fuel ◽  
2021 ◽  
Vol 295 ◽  
pp. 120610
Author(s):  
Yafei Luo ◽  
Binwei Xia ◽  
Honglian Li ◽  
Huarui Hu ◽  
Mingyang Wu ◽  
...  

2002 ◽  
Vol 11 (3) ◽  
pp. 096369350201100
Author(s):  
E.M. Gravel ◽  
T.D. Papathanasiou

Dual porosity fibrous media are important in a number of applications, ranging from bioreactor design and transport in living systems to composites manufacturing. In the present study we are concerned with the development of predictive models for the hydraulic permeability ( Kp) of various arrays of fibre bundles. For this we carry out extensive computations for viscous flow through arrays of fibre bundles using the Boundary Element Method (BEM) implemented on a multi-processor computer. Up to 350 individual filaments, arranged in square or hexagonal packing within bundles, which are also arranged in square of hexagonal packing, are included in each simulation. These are simple but not trivial models for fibrous preforms used in composites manufacturing – dual porosity systems characterised by different inter- and intra-tow porosities. The way these porosities affect the hydraulic permeability of such media is currently unknown and is elucidated through our simulations. Following numerical solution of the governing equations, ( Kp) is calculated from the computed flowrate through Darcy's law and is expressed as function of the inter- and intra-tow porosities (φ, φt) and of the filament radius ( Rf). Numerical results are also compared to analytical models. The latter form the starting point in the development of a dimensionless correlation for the permeability of such dual porosity media. It is found that the numerically computed permeabilities follow that correlation for a wide range of φ i, φt and Rf.


2016 ◽  
Vol 28 (7) ◽  
pp. 072003 ◽  
Author(s):  
Bo Zhou ◽  
Peixue Jiang ◽  
Ruina Xu ◽  
Xiaolong Ouyang

2015 ◽  
Vol 18 (04) ◽  
pp. 523-533 ◽  
Author(s):  
Shuhua Wang ◽  
Mingxu Ma ◽  
Wei Ding ◽  
Menglu Lin ◽  
Shengnan Chen

Summary Pressure-transient analysis in dual-porosity media is commonly studied by assuming a constant reservoir permeability. Such an assumption can result in significant errors when estimating pressure behavior and production rate of naturally fractured reservoirs as fracture permeability decreases during the production. At present, there is still a lack of analytical pressure-transient studies in naturally fractured reservoirs while taking stress-sensitive fracture permeability into account. In this study, an approximate analytical model is proposed to investigate the pressure behavior and production rate in the naturally fractured reservoirs. This model assumes that fracture permeability is a function of both permeability modulus and pressure difference. The pressure-dependent fracture system is coupled with matrix system with an unsteady-state exchange flow rate. A nonlinear diffusivity equation in fracture system is developed and solved by Pedrosa's transformation and a perturbation technique with zero-order approximation. A total of six solutions in the Laplace space are presented for two inner-boundary conditions and three outer-boundary conditions. Finally, pressure behavior and production rate are studied for both infinite and finite reservoirs. Pressure behavior and production rate from the models with and without stress-sensitive permeability are compared. It is found that, for an infinite reservoir with a constant-flow-rate boundary condition, if permeability modulus is 0.1, dimensionless pressure difference at the well bottom from the model with fracture-permeability sensitivity is 80% higher than that of the constant fracture-permeability model at a dimensionless time of 106. Such difference can be as high as 216% if permeability modulus increases to 0.15. On the contrary, for the infinite reservoirs with a constant-pressure boundary, the constant fracture-permeability model tends to overestimate the flow rate at wellbore and cumulative production. The proposed model not only provides an analytical and quantitative method to investigate the effects of fracture-permeability sensitivity on reservoir-pressure distribution and production, but it also can be applied to build up analysis of well test data from stress-sensitive formations.


2000 ◽  
Author(s):  
E. M. Gravel ◽  
T. D. Papathanasiou

Abstract A computational analysis of viscous flow through arrays of fiber bundles is carried out using the Boundary Element Method. We consider fiber bundles of elliptical cross section, each made up of up to 350 individual filaments. Such arrays are dual-porosity systems, characterized by different inter- (ϕi) and intra-tow (ϕt) porosities as well as by varying number (Nf) of filaments within each bundle. Investigating the influence of these parameters on the hydraulic permeability of hexagonal arrays of such bundles is the subject of our simulations. The results are compared to earlier analytical models and a good agreement is found. A dimensionless correlation is proposed and the computed permeabilities for bundles of aspect ratio λ = 2 and λ = 3 are shown to fall on a single master curve. This offers a generalized model for the calculation of the permeability of such dual porosity systems from knowledge of ϕi, ϕt, λ and Nf.


SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 58-67 ◽  
Author(s):  
Bin Gong ◽  
Mohammad Karimi-Fard ◽  
Louis J. Durlofsky

Summary The geological complexity of fractured reservoirs requires the use of simplified models for flow simulation. This is often addressed in practice by using flow modeling procedures based on the dual-porosity, dual-permeability concept. However, in most existing approaches, there is not a systematic and quantitative link between the underlying geological model [in this case, a discrete fracture model (DFM)] and the parameters appearing in the flow model. In this work, a systematic upscaling procedure is presented to construct a dual-porosity, dual-permeability model from detailed discrete fracture characterizations. The technique, referred to as a multiple subregion (MSR) model, represents an extension of an earlier method that did not account for gravitational effects. The subregions (or subgrid) are constructed for each coarse block using the iso-pressure curves obtained from local pressure solutions of a discrete fracture model over the block. The subregions thus account for the fracture distribution and can represent accurately the matrix-matrix and matrix-fracture transfer. The matrix subregions are connected to matrices in vertically adjacent blocks (as in a dual-permeability model) to capture phase segregation caused by gravity. Two-block problems are solved to provide fracture-fracture flow effects. All connections in the coarse-scale model are characterized in terms of upscaled transmissibilities, and the resulting coarse model can be used with any connectivity-based reservoir simulator. The method is applied to simulate 2D and 3D fracture models, with viscous, gravitational, and capillary pressure effects, and is shown to provide results in close agreement with the underlying DFM. Speedups of approximately a factor of 120 are observed for a complex 3D example. Introduction The accurate simulation of fractured reservoirs remains a significant challenge. Although improvements in many technical areas are required to enable reliable predictions, there is a clear need for procedures that provide accurate and efficient flow models from highly resolved geological characterizations. These geological descriptions are often in the form of discrete fracture representations, which are generally too detailed for direct use in reservoir simulation. Dual-porosity modeling is the standard simulation technique for flow prediction of fractured reservoirs. This model was first proposed by Barenblatt and Zheltov (1960) and introduced to the petroleum industry by Warren and Root (1963). The key aspect of this approach is to separate the flow through the fractures from the flow inside the matrix. The reservoir model is represented by two overlapping continua—one continuum to represent the fracture network, where the main flow occurs, and another continuum to represent the matrix, which acts as a source for the fracture continuum. The interaction between these two continua is modeled through a transfer function, also called the shape factor. Though very useful, the model is quite simple in that the geological and flow complexity is reduced to a single parameter, the shape factor. This parameter is in general different for each gridblock depending on the underlying geology and the type of flow.


2013 ◽  
Vol 19 (2) ◽  
pp. 97-110 ◽  
Author(s):  
S. Mohanasundaram ◽  
G. Suresh Kumar ◽  
Balaji Narasimhan

Sign in / Sign up

Export Citation Format

Share Document